論文の概要: Physics-based Indirect Illumination for Inverse Rendering
- arxiv url: http://arxiv.org/abs/2212.04705v2
- Date: Fri, 1 Dec 2023 17:37:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 19:03:12.316577
- Title: Physics-based Indirect Illumination for Inverse Rendering
- Title(参考訳): 逆レンダリングのための物理に基づく間接照明
- Authors: Youming Deng, Xueting Li, Sifei Liu, Ming-Hsuan Yang
- Abstract要約: 本稿では,複数視点のRGB画像からシーンの照明,幾何学,材料を学習する物理ベースの逆レンダリング手法を提案する。
副産物として、我々の物理ベースの逆レンダリングモデルは、フレキシブルでリアルな素材編集やリライティングを容易にする。
- 参考スコア(独自算出の注目度): 70.27534648770057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a physics-based inverse rendering method that learns the
illumination, geometry, and materials of a scene from posed multi-view RGB
images. To model the illumination of a scene, existing inverse rendering works
either completely ignore the indirect illumination or model it by coarse
approximations, leading to sub-optimal illumination, geometry, and material
prediction of the scene. In this work, we propose a physics-based illumination
model that first locates surface points through an efficient refined sphere
tracing algorithm, then explicitly traces the incoming indirect lights at each
surface point based on reflection. Then, we estimate each identified indirect
light through an efficient neural network. Moreover, we utilize the Leibniz's
integral rule to resolve non-differentiability in the proposed illumination
model caused by boundary lights inspired by differentiable irradiance in
computer graphics. As a result, the proposed differentiable illumination model
can be learned end-to-end together with geometry and materials estimation. As a
side product, our physics-based inverse rendering model also facilitates
flexible and realistic material editing as well as relighting. Extensive
experiments on synthetic and real-world datasets demonstrate that the proposed
method performs favorably against existing inverse rendering methods on novel
view synthesis and inverse rendering.
- Abstract(参考訳): 本稿では,複数視点のRGB画像からシーンの照明,幾何学,材料を学習する物理ベースの逆レンダリング手法を提案する。
シーンの照明をモデル化するために、既存の逆レンダリングは間接照明を完全に無視するか、粗い近似によってモデル化し、シーンの準最適照明、幾何学、物質予測に繋がる。
そこで本研究では, 効率の良い球面追跡アルゴリズムを用いて表面点を同定し, 反射に基づいて各表面点の入射光を明示的に追跡する物理ベースの照明モデルを提案する。
次に, 効率的なニューラルネットワークを用いて, 識別された各間接光を推定する。
さらに、ライプニッツ積分則を用いて、コンピュータグラフィックスにおける微分可能光にインスパイアされた境界光による照明モデルの非微分可能性を解決する。
その結果、提案した微分可能照明モデルは、幾何学や材料推定とともにエンドツーエンドで学習することができる。
副産物として、我々の物理ベースの逆レンダリングモデルは、フレキシブルでリアルな素材編集やリライティングを容易にする。
合成および実世界のデータセットに対する大規模な実験により、提案手法は、新規なビュー合成および逆レンダリングに関する既存の逆レンダリング手法に対して好適に機能することを示した。
関連論文リスト
- GS-Phong: Meta-Learned 3D Gaussians for Relightable Novel View Synthesis [63.5925701087252]
本稿では,3次元ガウス点の集合を用いて,点光で照らされたシーンを表現する手法を提案する。
Blinn-Phongモデルにインスパイアされた我々の手法は、シーンを周囲、拡散、および特異成分に分解する。
照明条件に依存しない幾何学的情報の分解を容易にするため,新しい二段階最適化に基づくメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-31T13:48:54Z) - NePF: Neural Photon Field for Single-Stage Inverse Rendering [6.977356702921476]
多視点画像の逆レンダリングに対処するために,新しい単一ステージフレームワークNePF(Neural Photon Field)を提案する。
NePFは、神経暗黙表面の重み関数の背後にある物理的意味を完全に活用することで、この統一を実現する。
我々は本手法を実データと合成データの両方で評価する。
論文 参考訳(メタデータ) (2023-11-20T06:15:46Z) - Diffusion Posterior Illumination for Ambiguity-aware Inverse Rendering [63.24476194987721]
画像からシーン特性を推定する逆レンダリングは、困難な逆問題である。
既存のソリューションの多くは、プリエントを逆レンダリングパイプラインに組み込んで、プラウシブルなソリューションを奨励している。
本稿では,自然照明マップ上で事前学習した確率拡散モデルを最適化フレームワークに統合する手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T12:39:28Z) - NeILF++: Inter-Reflectable Light Fields for Geometry and Material
Estimation [36.09503501647977]
我々は静的なシーンの照明を1つのニューラルインシデント光場(NeILF)と1つのニューラルラディアンス場(NeRF)として定式化する。
提案手法は, 幾何再構成の品質, 材料推定精度, 新規なビューレンダリングの忠実度の観点から, 最先端の結果が得られる。
論文 参考訳(メタデータ) (2023-03-30T04:59:48Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
逆レンダリング手法は、多視点RGB画像から幾何学、材料、照明を推定することを目的としている。
本稿では,多視点画像から材料と照明を分解するエンドツーエンドの逆レンダリングパイプラインを提案する。
論文 参考訳(メタデータ) (2023-03-29T12:05:19Z) - Modeling Indirect Illumination for Inverse Rendering [31.734819333921642]
本稿では,空間的に変化する間接照明を効率よく回収するための新しい手法を提案する。
重要な洞察は、間接照明は入力画像から学習した神経放射場から便利に導出できるということである。
合成データと実データの両方の実験は、従来の研究と比較して、我々のアプローチの優れた性能を示している。
論文 参考訳(メタデータ) (2022-04-14T09:10:55Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
そこで本研究では,単体画像から固有物体特性を推定する難題について,微分可能量を用いて検討する。
そこで本研究では、スペクトル化とレイトレーシングを組み合わせることで、これらの効果をサポートするハイブリッド微分可能なDIBR++を提案する。
より高度な物理ベースの微分可能値と比較すると、DIBR++はコンパクトで表現力のあるモデルであるため、高い性能を持つ。
論文 参考訳(メタデータ) (2021-10-30T01:59:39Z) - PhySG: Inverse Rendering with Spherical Gaussians for Physics-based
Material Editing and Relighting [60.75436852495868]
本稿では、RGB入力画像からジオメトリ、マテリアル、イルミネーションをゼロから再構築する逆レンダリングパイプラインPhySGを紹介します。
我々は合成データと実データの両方を用いて,新しい視点のレンダリングを可能にするだけでなく,物質や照明の物理ベースの外観編集を可能にすることを実証した。
論文 参考訳(メタデータ) (2021-04-01T17:59:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。