Entanglement Hamiltonian Tomography in Quantum Simulation
- URL: http://arxiv.org/abs/2009.09000v2
- Date: Tue, 6 Oct 2020 15:05:21 GMT
- Title: Entanglement Hamiltonian Tomography in Quantum Simulation
- Authors: Christian Kokail, Rick van Bijnen, Andreas Elben, Beno\^it Vermersch,
Peter Zoller
- Abstract summary: Entanglement in quantum simulators is an outstanding challenge in today's era of intermediate scale quantum devices.
Here we discuss an efficient tomographic protocol for reconstructing reduced density matrices and entanglement spectra for spin systems.
We show the validity and efficiency of the protocol for a long-range Ising model in 1D using numerical simulations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement is the crucial ingredient of quantum many-body physics, and
characterizing and quantifying entanglement in closed system dynamics of
quantum simulators is an outstanding challenge in today's era of intermediate
scale quantum devices. Here we discuss an efficient tomographic protocol for
reconstructing reduced density matrices and entanglement spectra for spin
systems. The key step is a parametrization of the reduced density matrix in
terms of an entanglement Hamiltonian involving only quasi local few-body terms.
This ansatz is fitted to, and can be independently verified from, a small
number of randomised measurements. The ansatz is suggested by Conformal Field
Theory in quench dynamics, and via the Bisognano-Wichmann theorem for ground
states. Not only does the protocol provide a testbed for these theories in
quantum simulators, it is also applicable outside these regimes. We show the
validity and efficiency of the protocol for a long-range Ising model in 1D
using numerical simulations. Furthermore, by analyzing data from $10$ and $20$
ion quantum simulators [Brydges \textit{et al.}, Science, 2019], we demonstrate
measurement of the evolution of the entanglement spectrum in quench dynamics.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Demonstration of a variational quantum eigensolver with a solid-state spin system under ambient conditions [15.044543674753308]
Quantum simulators offer the potential to utilize the quantum nature of a physical system to study another physical system.
The variational-quantum-eigensolver algorithm is a particularly promising application for investigating molecular electronic structures.
Spin-based solid-state qubits have the advantage of long decoherence time and high-fidelity quantum gates.
arXiv Detail & Related papers (2024-07-23T09:17:06Z) - Predicting Arbitrary State Properties from Single Hamiltonian Quench Dynamics [0.8639941465436463]
We introduce the Hamiltonian shadow protocol, which estimates arbitrary state properties on analog quantum simulators.
The protocol does not require sophisticated control and can be applied to a wide range of analog quantum simulators.
arXiv Detail & Related papers (2023-11-01T17:52:23Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Exploring Large-Scale Entanglement in Quantum Simulation [0.0]
Entanglement is a distinguishing feature of quantum many-body systems.
Here we perform experimental investigations of entanglement based on the entanglement Hamiltonian.
arXiv Detail & Related papers (2023-05-31T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Characterization and Verification of Trotterized Digital Quantum
Simulation via Hamiltonian and Liouvillian Learning [0.0]
We propose Floquet Hamiltonian learning to reconstruct the experimentally realized Floquet Hamiltonian order-by-order.
We show that our protocol provides the basis for feedback-loop design and calibration of new types of quantum gates.
arXiv Detail & Related papers (2022-03-29T18:29:01Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.