Demonstration of a variational quantum eigensolver with a solid-state spin system under ambient conditions
- URL: http://arxiv.org/abs/2407.16321v1
- Date: Tue, 23 Jul 2024 09:17:06 GMT
- Title: Demonstration of a variational quantum eigensolver with a solid-state spin system under ambient conditions
- Authors: Xuliang Du, Yang Shen, Zipeng Wu, Bei Zeng, Sen Yang,
- Abstract summary: Quantum simulators offer the potential to utilize the quantum nature of a physical system to study another physical system.
The variational-quantum-eigensolver algorithm is a particularly promising application for investigating molecular electronic structures.
Spin-based solid-state qubits have the advantage of long decoherence time and high-fidelity quantum gates.
- Score: 15.044543674753308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum simulators offer the potential to utilize the quantum nature of a physical system to study another physical system. In contrast to conventional simulation, which experiences an exponential increase in computational complexity, quantum simulation cost increases only linearly with increasing size of the problem, rendering it a promising tool for applications in quantum chemistry. The variational-quantum-eigensolver algorithm is a particularly promising application for investigating molecular electronic structures. For its experimental implementation, spin-based solid-state qubits have the advantage of long decoherence time and high-fidelity quantum gates, which can lead to high accuracy in the ground-state finding. This study uses the nitrogen-vacancy-center system in diamond to implement the variational-quantum-eigensolver algorithm and successfully finds the eigenvalue of a specific Hamiltonian without the need for error-mitigation techniques. With a fidelity of 98.9% between the converged state and the ideal eigenstate, the demonstration provides an important step toward realizing a scalable quantum simulator in solid-state spin systems.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Scalable Quantum Computation of Highly Excited Eigenstates with Spectral
Transforms [0.76146285961466]
We use the HHL algorithm to prepare excited interior eigenstates of physical Hamiltonians in a variational and targeted manner.
This is enabled by the efficient computation of the expectation values of inverse Hamiltonians on quantum computers.
We detail implementations of this scheme for both fault-tolerant and near-term quantum computers.
arXiv Detail & Related papers (2023-02-13T19:01:02Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Measuring Arbitrary Physical Properties in Analog Quantum Simulation [0.5999777817331317]
A central challenge in analog quantum simulation is to characterize desirable physical properties of quantum states produced in experiments.
We propose and analyze a scalable protocol that leverages the ergodic nature of generic quantum dynamics.
Our protocol excitingly promises to overcome limited controllability and, thus, enhance the versatility and utility of near-term quantum technologies.
arXiv Detail & Related papers (2022-12-05T19:00:01Z) - Differentiable matrix product states for simulating variational quantum
computational chemistry [6.954927515599816]
We propose a parallelizable classical simulator for variational quantum eigensolver(VQE)
Our simulator seamlessly integrates the quantum circuit evolution into the classical auto-differentiation framework.
As applications, we use our simulator to study commonly used small molecules such as HF, LiH and H$$O, as well as larger molecules CO$$, BeH$ and H$_4$ with up to $40$ qubits.
arXiv Detail & Related papers (2022-11-15T08:36:26Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Holographic dynamics simulations with a trapped ion quantum computer [0.0]
We demonstrate and benchmark a new scalable quantum simulation paradigm.
Using a Honeywell trapped ion quantum processor, we simulate the non-integrable dynamics of the self-dual kicked Ising model.
Results suggest that quantum tensor network methods, together with state-of-the-art quantum processor capabilities, enable a viable path to practical quantum advantage in the near term.
arXiv Detail & Related papers (2021-05-19T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.