Feature Selection on Lyme Disease Patient Survey Data
- URL: http://arxiv.org/abs/2009.09087v1
- Date: Mon, 24 Aug 2020 22:35:39 GMT
- Title: Feature Selection on Lyme Disease Patient Survey Data
- Authors: Joshua Vendrow, Jamie Haddock, Deanna Needell, and Lorraine Johnson
- Abstract summary: Lyme disease is a rapidly growing illness that remains poorly understood within the medical community.
We investigate these questions by applying machine learning techniques to a large scale Lyme disease patient registry.
- Score: 7.895389437572245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lyme disease is a rapidly growing illness that remains poorly understood
within the medical community. Critical questions about when and why patients
respond to treatment or stay ill, what kinds of treatments are effective, and
even how to properly diagnose the disease remain largely unanswered. We
investigate these questions by applying machine learning techniques to a large
scale Lyme disease patient registry, MyLymeData, developed by the nonprofit
LymeDisease.org. We apply various machine learning methods in order to measure
the effect of individual features in predicting participants' answers to the
Global Rating of Change (GROC) survey questions that assess the self-reported
degree to which their condition improved, worsened, or remained unchanged
following antibiotic treatment. We use basic linear regression, support vector
machines, neural networks, entropy-based decision tree models, and $k$-nearest
neighbors approaches. We first analyze the general performance of the model and
then identify the most important features for predicting participant answers to
GROC. After we identify the "key" features, we separate them from the dataset
and demonstrate the effectiveness of these features at identifying GROC. In
doing so, we highlight possible directions for future study both mathematically
and clinically.
Related papers
- Effect of Clinical History on Predictive Model Performance for Renal Complications of Diabetes [1.4330510916280879]
Diabetes is a chronic disease characterised by a high risk of developing diabetic nephropathy.
The early identification of individuals at heightened risk of such complications or their exacerbation can be of paramount importance to set a correct course of treatment.
We develop an array of logistic regression models to predict, over different prediction horizons, the crossing of clinically relevant glomerular filtration rate (eGFR) thresholds for patients with diabetes.
arXiv Detail & Related papers (2024-09-10T20:27:00Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
We introduce a rare disease question-answering (ReDis-QA) dataset to evaluate the performance of Large Language Models (LLMs) in diagnosing rare diseases.
We collected 1360 high-quality question-answer pairs within the ReDis-QA dataset, covering 205 rare diseases.
We then benchmarked several open-source LLMs, revealing that diagnosing rare diseases remains a significant challenge for these models.
Experiment results demonstrate that ReCOP can effectively improve the accuracy of LLMs on the ReDis-QA dataset by an average of 8%.
arXiv Detail & Related papers (2024-08-15T21:09:09Z) - Can Machine Learning Assist in Diagnosis of Primary Immune Thrombocytopenia? A feasibility study [12.4123972735841]
Primary Immune thrombocytopenia (ITP) is a rare autoimmune disease characterised by immune-mediated destruction of peripheral blood platelets in patients.
There is no established test to confirm the disease and no biomarker with which one can predict the response to treatment and outcome.
We conduct a feasibility study to check if machine learning can be applied effectively for diagnosis of ITP using routine blood tests and demographic data in a non-acute outpatient setting.
arXiv Detail & Related papers (2024-05-31T01:04:46Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Walk4Me: Telehealth Community Mobility Assessment, An Automated System
for Early Diagnosis and Disease Progression [2.96872688940436]
We introduce Walk4Me, a telehealth community mobility assessment system designed to facilitate early diagnosis, severity, and progression identification.
To accomplish this, we employ an Artificial Intelligence (AI)-based detection of gait characteristics in patients and typically developing peers.
Our system remotely and in real-time collects data from device sensors (e.g., acceleration from a mobile device, etc.) using our novel Walk4Me API.
arXiv Detail & Related papers (2023-05-05T10:47:34Z) - Explorative analysis of human disease-symptoms relations using the
Convolutional Neural Network [0.0]
This study aims to understand the extent of symptom types in disease prediction tasks.
Our results indicate that machine learning can potentially diagnose diseases with the 98-100% accuracy in the early stage.
arXiv Detail & Related papers (2023-02-23T15:02:07Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.