Co-Evolution of Multi-Robot Controllers and Task Cues for Off-World Open
Pit Mining
- URL: http://arxiv.org/abs/2009.09149v1
- Date: Sat, 19 Sep 2020 03:13:28 GMT
- Title: Co-Evolution of Multi-Robot Controllers and Task Cues for Off-World Open
Pit Mining
- Authors: Jekan Thangavelautham and Yinan Xu
- Abstract summary: This paper presents a novel method for developing scalable controllers for use in multi-robot excavation and site-preparation scenarios.
The controller starts with a blank slate and does not require human-authored operations scripts nor detailed modeling of the kinematics and dynamics of the excavator.
In this paper, we explore the use of templates and task cues to improve group performance further and minimize antagonism.
- Score: 0.6091702876917281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robots are ideal for open-pit mining on the Moon as its a dull, dirty, and
dangerous task. The challenge is to scale up productivity with an
ever-increasing number of robots. This paper presents a novel method for
developing scalable controllers for use in multi-robot excavation and
site-preparation scenarios. The controller starts with a blank slate and does
not require human-authored operations scripts nor detailed modeling of the
kinematics and dynamics of the excavator. The 'Artificial Neural Tissue' (ANT)
architecture is used as a control system for autonomous robot teams to perform
resource gathering. This control architecture combines a variable-topology
neural-network structure with a coarse-coding strategy that permits specialized
areas to develop in the tissue. Our work in this field shows that fleets of
autonomous decentralized robots have an optimal operating density. Too few
robots result in insufficient labor, while too many robots cause antagonism,
where the robots undo each other's work and are stuck in gridlock. In this
paper, we explore the use of templates and task cues to improve group
performance further and minimize antagonism. Our results show light beacons and
task cues are effective in sparking new and innovative solutions at improving
robot performance when placed under stressful situations such as severe
time-constraint.
Related papers
- Physical Simulation for Multi-agent Multi-machine Tending [11.017120167486448]
Reinforcement learning (RL) offers a promising solution where robots can learn through interaction with the environment.
We leveraged a simplistic robotic system to work with RL with "real" data without having to deploy large expensive robots in a manufacturing setting.
arXiv Detail & Related papers (2024-10-11T17:57:44Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.
A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.
The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - Grounding Language Models in Autonomous Loco-manipulation Tasks [3.8363685417355557]
We propose a novel framework that learns, selects, and plans behaviors based on tasks in different scenarios.
We leverage the planning and reasoning features of the large language model (LLM), constructing a hierarchical task graph.
Experiments in simulation and real-world using the CENTAURO robot show that the language model based planner can efficiently adapt to new loco-manipulation tasks.
arXiv Detail & Related papers (2024-09-02T15:27:48Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
We introduce Neural Jacobian Fields, an architecture that autonomously learns to model and control robots from vision alone.
Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot.
arXiv Detail & Related papers (2024-07-11T17:55:49Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Exploring the effects of robotic design on learning and neural control [0.0]
dissertation focuses on the development of robotic bodies, rather than neural controllers.
I have discovered that robots can be designed such that they overcome many of the current pitfalls encountered by neural controllers in multitask settings.
arXiv Detail & Related papers (2023-06-06T15:17:34Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.