Word class flexibility: A deep contextualized approach
- URL: http://arxiv.org/abs/2009.09241v1
- Date: Sat, 19 Sep 2020 14:41:50 GMT
- Title: Word class flexibility: A deep contextualized approach
- Authors: Bai Li, Guillaume Thomas, Yang Xu, Frank Rudzicz
- Abstract summary: We propose a principled methodology to explore regularity in word class flexibility.
We find that contextualized embeddings capture human judgment of class variation within words in English.
We find greater semantic variation when flexible lemmas are used in their dominant word class.
- Score: 18.50173460090958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Word class flexibility refers to the phenomenon whereby a single word form is
used across different grammatical categories. Extensive work in linguistic
typology has sought to characterize word class flexibility across languages,
but quantifying this phenomenon accurately and at scale has been fraught with
difficulties. We propose a principled methodology to explore regularity in word
class flexibility. Our method builds on recent work in contextualized word
embeddings to quantify semantic shift between word classes (e.g., noun-to-verb,
verb-to-noun), and we apply this method to 37 languages. We find that
contextualized embeddings not only capture human judgment of class variation
within words in English, but also uncover shared tendencies in class
flexibility across languages. Specifically, we find greater semantic variation
when flexible lemmas are used in their dominant word class, supporting the view
that word class flexibility is a directional process. Our work highlights the
utility of deep contextualized models in linguistic typology.
Related papers
- DADA: Dialect Adaptation via Dynamic Aggregation of Linguistic Rules [64.93179829965072]
DADA is a modular approach to imbue SAE-trained models with multi-dialectal robustness.
We show that DADA is effective for both single task and instruction fine language models.
arXiv Detail & Related papers (2023-05-22T18:43:31Z) - A Comprehensive Empirical Evaluation of Existing Word Embedding
Approaches [5.065947993017158]
We present the characteristics of existing word embedding approaches and analyze them with regard to many classification tasks.
Traditional approaches mostly use matrix factorization to produce word representations, and they are not able to capture the semantic and syntactic regularities of the language very well.
On the other hand, Neural-network-based approaches can capture sophisticated regularities of the language and preserve the word relationships in the generated word representations.
arXiv Detail & Related papers (2023-03-13T15:34:19Z) - CCPrefix: Counterfactual Contrastive Prefix-Tuning for Many-Class
Classification [57.62886091828512]
We propose a brand-new prefix-tuning method, Counterfactual Contrastive Prefix-tuning (CCPrefix) for many-class classification.
Basically, an instance-dependent soft prefix, derived from fact-counterfactual pairs in the label space, is leveraged to complement the language verbalizers in many-class classification.
arXiv Detail & Related papers (2022-11-11T03:45:59Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations, both autoregressive and masked language models learn to emulate semantic relations between expressions.
Turning to natural language, our experiments with a specific phenomenon -- referential opacity -- add to the growing body of evidence that current language models do not well-represent natural language semantics.
arXiv Detail & Related papers (2022-10-14T02:35:19Z) - Neural Abstructions: Abstractions that Support Construction for Grounded
Language Learning [69.1137074774244]
Leveraging language interactions effectively requires addressing limitations in the two most common approaches to language grounding.
We introduce the idea of neural abstructions: a set of constraints on the inference procedure of a label-conditioned generative model.
We show that with this method a user population is able to build a semantic modification for an open-ended house task in Minecraft.
arXiv Detail & Related papers (2021-07-20T07:01:15Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
We propose a self-supervised approach to model lexical semantic change.
We show that our method can be used for the detection of semantic change with any alignment method.
We illustrate the utility of our techniques using experimental results on three different datasets.
arXiv Detail & Related papers (2021-01-30T18:59:43Z) - Deep Subjecthood: Higher-Order Grammatical Features in Multilingual BERT [7.057643880514415]
We investigate how Multilingual BERT (mBERT) encodes grammar by examining how the high-order grammatical feature of morphosyntactic alignment is manifested across the embedding spaces of different languages.
arXiv Detail & Related papers (2021-01-26T19:21:59Z) - Dynamic Contextualized Word Embeddings [20.81930455526026]
We introduce dynamic contextualized word embeddings that represent words as a function of both linguistic and extralinguistic context.
Based on a pretrained language model (PLM), dynamic contextualized word embeddings model time and social space jointly.
We highlight potential application scenarios by means of qualitative and quantitative analyses on four English datasets.
arXiv Detail & Related papers (2020-10-23T22:02:40Z) - A Neural Generative Model for Joint Learning Topics and Topic-Specific
Word Embeddings [42.87769996249732]
We propose a novel generative model to explore both local and global context for joint learning topics and topic-specific word embeddings.
The trained model maps words to topic-dependent embeddings, which naturally addresses the issue of word polysemy.
arXiv Detail & Related papers (2020-08-11T13:54:11Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
We present a semi-supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations.
We observe significant gains in effectiveness on document and intent classification for a diverse set of languages.
arXiv Detail & Related papers (2020-07-29T19:38:35Z) - Comparative Analysis of Word Embeddings for Capturing Word Similarities [0.0]
Distributed language representation has become the most widely used technique for language representation in various natural language processing tasks.
Most of the natural language processing models that are based on deep learning techniques use already pre-trained distributed word representations, commonly called word embeddings.
selecting the appropriate word embeddings is a perplexing task since the projected embedding space is not intuitive to humans.
arXiv Detail & Related papers (2020-05-08T01:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.