Multi Agent Path Finding with Awareness for Spatially Extended Agents
- URL: http://arxiv.org/abs/2009.09355v1
- Date: Sun, 20 Sep 2020 05:40:04 GMT
- Title: Multi Agent Path Finding with Awareness for Spatially Extended Agents
- Authors: Shyni Thomas and Dipti Deodhare and M.N. Murty
- Abstract summary: Path finding problems involve identification of a plan for conflict free movement of agents over a common road network.
In this paper, we consider spatially extended agents which have a size comparable to the length of the road on which they travel.
An optimal multi agent path finding approach for spatially-extended agents was proposed in the eXtended Conflict Based Search (XCBS) algorithm.
- Score: 0.5156484100374058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Path finding problems involve identification of a plan for conflict free
movement of agents over a common road network. Most approaches to this problem
handle the agents as point objects, wherein the size of the agent is
significantly smaller than the road on which it travels. In this paper, we
consider spatially extended agents which have a size comparable to the length
of the road on which they travel. An optimal multi agent path finding approach
for spatially-extended agents was proposed in the eXtended Conflict Based
Search (XCBS) algorithm. As XCBS resolves only a pair of conflicts at a time,
it results in deeper search trees in case of cascading or multiple (more than
two agent) conflicts at a given location. This issue is addressed in eXtended
Conflict Based Search with Awareness (XCBS-A) in which an agent uses awareness
of other agents' plans to make its own plan. In this paper, we explore XCBS-A
in greater detail, we theoretically prove its completeness and empirically
demonstrate its performance with other algorithms in terms of variances in road
characteristics, agent characteristics and plan characteristics. We demonstrate
the distributive nature of the algorithm by evaluating its performance when
distributed over multiple machines. XCBS-A generates a huge search space
impacting its efficiency in terms of memory; to address this we propose an
approach for memory-efficiency and empirically demonstrate the performance of
the algorithm. The nature of XCBS-A is such that it may lead to suboptimal
solutions, hence the final contribution of this paper is an enhanced approach,
XCBS-Local Awareness (XCBS-LA) which we prove will be optimal and complete.
Related papers
- Cooperative Reward Shaping for Multi-Agent Pathfinding [4.244426154524592]
The primary objective of Multi-Agent Pathfinding (MAPF) is to plan efficient and conflict-free paths for all agents.
Traditional multi-agent path planning algorithms struggle to achieve efficient distributed path planning for multiple agents.
This letter introduces a unique reward shaping technique based on Independent Q-Learning (IQL)
arXiv Detail & Related papers (2024-07-15T02:44:41Z) - Optimal and Bounded Suboptimal Any-Angle Multi-agent Pathfinding [13.296796764344169]
We present the first optimal any-angle multi-agent pathfinding algorithm.
Our planner is based on the Continuous Conflict-based Search (CCBS) algorithm and an optimal any-angle variant of the Safe Interval Path Planning (TO-AA-SIPP)
We adapt two techniques from classical MAPF to the any-angle setting, namely Disjoint Splitting and Multi-Constraints.
arXiv Detail & Related papers (2024-04-25T07:41:47Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
Multi-armed bandits are a sequential-decision-making framework, where, at each interaction step, the learner selects an arm and observes a reward.
We consider the scenario in which the learner has access to a set of mediators, each of which selects the arms on the agent's behalf according to a and possibly unknown policy.
We propose a sequential decision-making strategy for discovering the best arm under the assumption that the mediators' policies are known to the learner.
arXiv Detail & Related papers (2023-08-29T18:18:21Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
We introduce an original variant of Monte-Carlo Tree Search (MCTS) tailored to multi-agent pathfinding.
Specifically, we use individual paths to assist the agents with the the goal-reaching behavior.
We also use a dedicated decomposition technique to reduce the branching factor of the tree search procedure.
arXiv Detail & Related papers (2023-07-25T12:33:53Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
arXiv Detail & Related papers (2023-04-01T15:50:18Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Subdimensional Expansion Using Attention-Based Learning For Multi-Agent
Path Finding [9.2127262112464]
Multi-Agent Path Finding (MAPF) finds conflict-free paths for multiple agents from their respective start to goal locations.
We develop a novel multi-agent planner called LM* by integrating this learning-based single-agent planner with M*.
Our results show that for both "seen" and "unseen" maps, in comparison with M*, LM* has fewer conflicts to be resolved and thus, runs faster and enjoys higher success rates.
arXiv Detail & Related papers (2021-09-29T20:01:04Z) - Decentralised Approach for Multi Agent Path Finding [6.599344783327053]
Multi Agent Path Finding (MAPF) requires identification of conflict free paths for spatially-extended agents.
These find application in real world problems like Convoy Movement Problem, Train Scheduling etc.
Our proposed approach, Decentralised Multi Agent Path Finding (DeMAPF), handles MAPF as a sequence of pathplanning and allocation problems.
arXiv Detail & Related papers (2021-06-03T18:07:26Z) - Heterogeneous Explore-Exploit Strategies on Multi-Star Networks [0.0]
We study a class of distributed bandit problems in which agents communicate over a multi-star network.
We propose new heterogeneous explore-exploit strategies using the multi-star as the model irregular network graph.
arXiv Detail & Related papers (2020-09-02T20:56:49Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.