論文の概要: DeepDyve: Dynamic Verification for Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2009.09663v2
- Date: Fri, 16 Oct 2020 03:00:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 03:48:42.892396
- Title: DeepDyve: Dynamic Verification for Deep Neural Networks
- Title(参考訳): DeepDyve: ディープニューラルネットワークの動的検証
- Authors: Yu Li, Min Li, Bo Luo, Ye Tian, and Qiang Xu
- Abstract要約: DeepDyveでは、トレーニング済みのニューラルネットワークを使用している。
我々は,DeepDyveにおけるリスク/オーバヘッドトレードオフの最適化を実現するために,効率的かつ効率的なアーキテクチャとタスク探索手法を開発した。
- 参考スコア(独自算出の注目度): 16.20238078882485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have become one of the enabling technologies in
many safety-critical applications, e.g., autonomous driving and medical image
analysis. DNN systems, however, suffer from various kinds of threats, such as
adversarial example attacks and fault injection attacks. While there are many
defense methods proposed against maliciously crafted inputs, solutions against
faults presented in the DNN system itself (e.g., parameters and calculations)
are far less explored. In this paper, we develop a novel lightweight
fault-tolerant solution for DNN-based systems, namely DeepDyve, which employs
pre-trained neural networks that are far simpler and smaller than the original
DNN for dynamic verification. The key to enabling such lightweight checking is
that the smaller neural network only needs to produce approximate results for
the initial task without sacrificing fault coverage much. We develop efficient
and effective architecture and task exploration techniques to achieve optimized
risk/overhead trade-off in DeepDyve. Experimental results show that DeepDyve
can reduce 90% of the risks at around 10% overhead.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、自律運転や医療画像解析など、多くの安全クリティカルなアプリケーションにおいて実現可能な技術の1つとなっている。
しかし、DNNシステムは、敵のサンプル攻撃や障害注入攻撃など、様々な種類の脅威に悩まされている。
悪意ある入力に対して多くの防御手法が提案されているが、DNNシステム自体(例えばパラメータや計算)で提示される障害に対する解決策は、はるかに少ない。
本稿では,従来のDNNよりもはるかにシンプルで小さくトレーニング済みのニューラルネットワークを用いて動的検証を行うDNNベースのシステムのための,新しい軽量フォールトトレラントソリューションであるDeepDyveを開発する。
このような軽量なチェックを可能にする鍵は、小さなニューラルネットワークが障害カバレッジを犠牲にすることなく、初期タスクの近似結果のみを生成する必要があることである。
我々は,DeepDyveにおけるリスク/オーバヘッドトレードオフの最適化を実現するために,効率的かつ効率的なアーキテクチャとタスク探索手法を開発した。
実験の結果、DeepDyveはリスクの90%を約10%のオーバーヘッドで削減できることがわかった。
関連論文リスト
- Model-Agnostic Reachability Analysis on Deep Neural Networks [25.54542656637704]
我々はDeepAgnと呼ばれるモデルに依存しない検証フレームワークを開発した。
FNN、リカレントニューラルネットワーク(RNN)、あるいは両者の混合に適用することができる。
レイヤやパラメータといったネットワークの内部構造にアクセスする必要はない。
論文 参考訳(メタデータ) (2023-04-03T09:01:59Z) - OccRob: Efficient SMT-Based Occlusion Robustness Verification of Deep
Neural Networks [7.797299214812479]
Occlusionは、ディープニューラルネットワーク(DNN)に対する一般的かつ容易に実現可能なセマンティック摂動である
DNNを騙していくつかのセグメントを隠蔽することで入力画像を誤分類し、おそらく深刻なエラーを引き起こす可能性がある。
DNNの既存のロバスト性検証アプローチは、非意味的な摂動に重点を置いている。
論文 参考訳(メタデータ) (2023-01-27T18:54:00Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - Towards Adversarial-Resilient Deep Neural Networks for False Data
Injection Attack Detection in Power Grids [7.351477761427584]
偽データインジェクション攻撃(FDIA)は、電力システムの状態推定に重大なセキュリティ上の脅威をもたらす。
最近の研究では、機械学習(ML)技術、特にディープニューラルネットワーク(DNN)が提案されている。
論文 参考訳(メタデータ) (2021-02-17T22:26:34Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - NeuroAttack: Undermining Spiking Neural Networks Security through
Externally Triggered Bit-Flips [11.872768663147776]
Spiking Neural Networks(SNN)は、機械学習システムにおける正確性、リソース利用、エネルギー効率の課題に対する、有望な解決策として登場した。
これらのシステムは主流になってきていますが、本質的にセキュリティと信頼性の問題があります。
我々は低レベルの信頼性問題を利用してSNNの整合性を脅かすクロスレイヤー攻撃であるNeuroAttackを提案する。
論文 参考訳(メタデータ) (2020-05-16T16:54:00Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
ディープニューラルネットワーク(DNN)は、敵対的な例やその他のデータ摂動に対して脆弱である。
GraNは、どのDNNにも容易に適応できる時間およびパラメータ効率の手法である。
GraNは多くの問題セットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-04-20T10:09:27Z) - DeepHammer: Depleting the Intelligence of Deep Neural Networks through
Targeted Chain of Bit Flips [29.34622626909906]
量子化ディープニューラルネットワーク(DNN)に対するハードウェアベースの最初の攻撃を実演する。
DeepHammerは、数分で実行時にDNNの推論動作を修正することができる。
私たちの研究は、将来のディープラーニングシステムにセキュリティメカニズムを組み込む必要性を強調しています。
論文 参考訳(メタデータ) (2020-03-30T18:51:59Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。