論文の概要: A Concise Introduction to Reinforcement Learning in Robotics
- arxiv url: http://arxiv.org/abs/2210.07397v1
- Date: Thu, 13 Oct 2022 22:29:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 17:26:43.938374
- Title: A Concise Introduction to Reinforcement Learning in Robotics
- Title(参考訳): ロボットにおける強化学習の簡潔な紹介
- Authors: Akash Nagaraj, Mukund Sood, Bhagya M Patil
- Abstract要約: 本稿では,ロボット工学分野に応用された強化学習の研究者のためのリファレンスガイドとして機能することを目的とする。
我々は、ロボット工学を念頭に置いて、強化学習の分野の研究に必要な最も重要な概念を取り上げてきた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the biggest hurdles robotics faces is the facet of sophisticated and
hard-to-engineer behaviors. Reinforcement learning offers a set of tools, and a
framework to address this problem. In parallel, the misgivings of robotics
offer a solid testing ground and evaluation metric for advancements in
reinforcement learning. The two disciplines go hand-in-hand, much like the
fields of Mathematics and Physics. By means of this survey paper, we aim to
invigorate links between the research communities of the two disciplines by
focusing on the work done in reinforcement learning for locomotive and control
aspects of robotics. Additionally, we aim to highlight not only the notable
successes but also the key challenges of the application of Reinforcement
Learning in Robotics. This paper aims to serve as a reference guide for
researchers in reinforcement learning applied to the field of robotics. The
literature survey is at a fairly introductory level, aimed at aspiring
researchers. Appropriately, we have covered the most essential concepts
required for research in the field of reinforcement learning, with robotics in
mind. Through a thorough analysis of this problem, we are able to manifest how
reinforcement learning could be applied profitably, and also focus on
open-ended questions, as well as the potential for future research.
- Abstract(参考訳): ロボットが直面する最大のハードルの1つは、洗練されたエンジニアの振る舞いだ。
強化学習は一連のツールと、この問題に対処するためのフレームワークを提供する。
並行して、ロボット工学の誤解は、強化学習の進歩のための堅実な試験場と評価指標を提供する。
2つの分野は、数学と物理学の分野とよく似ている。
本研究の目的は、機関車の強化学習とロボット工学の制御の側面に着目して、2つの分野の研究コミュニティ間のつながりを活性化することである。
さらに,ロボティクスにおける強化学習の適用において,注目すべき成功だけでなく,重要な課題についても強調する。
本稿では,ロボット工学の分野に適用される強化学習のリファレンスガイドとして機能することを目的としている。
文献調査は、研究者を志す目的で、かなり導入段階にある。
適切に、強化学習の分野で研究に必要な最も重要な概念をロボット工学を念頭に置いて取り上げてきた。
この問題を徹底的に分析することで、強化学習がいかに利益に応用できるかを明らかにし、また、オープンエンドの質問や将来の研究の可能性にも焦点を当てることができる。
関連論文リスト
- Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
自己指導型学習は、制御戦略を学ぶのに必要な人間のアノテーションとエンジニアリングの労力を減らす可能性がある。
我々の研究は、強化学習(RL)自体が自己監督的な問題であることを示す先行研究に基づいている。
コントラスト学習に基づく自己教師付きRLアルゴリズムは,実世界の画像に基づくロボット操作タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-06T01:36:56Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Physics-Guided Hierarchical Reward Mechanism for Learning-Based Robotic
Grasping [10.424363966870775]
我々は,学習効率と学習に基づく自律的把握の一般化性を向上させるために,階層的リワード機構を備えた物理誘導型深層強化学習を開発した。
本手法は3本指MICOロボットアームを用いたロボット把握作業において有効である。
論文 参考訳(メタデータ) (2022-05-26T18:01:56Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
ロボット学習のためのプラットフォームとしてデュアルアーム設定を提案する。
このセットアップの潜在的なメリットと、追求できる課題と研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-10-15T12:51:57Z) - Auditing Robot Learning for Safety and Compliance during Deployment [4.742825811314168]
我々は、ロボット学習アルゴリズムを人間との互換性を確認するのにいかに最適かを研究する。
これは、ロボット学習コミュニティ全体の努力を必要とする難しい問題だと考えています。
論文 参考訳(メタデータ) (2021-10-12T02:40:11Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
与えられたデータセットの任意の目標状態に到達するために学習することによって、環境の機能的な理解を学ぶ目的を提案する。
提案手法は,高次元カメラ画像上で動作し,これまで見つからなかったシーンやオブジェクトに一般化した実ロボットの様々なスキルを学習することができる。
論文 参考訳(メタデータ) (2021-04-15T20:10:11Z) - Semantics for Robotic Mapping, Perception and Interaction: A Survey [93.93587844202534]
理解の研究は、ロボットに世界が何を意味するのかを決定する。
人間とロボットが同じ世界で活動するようになるにつれ、人間とロボットの相互作用の展望も意味論をもたらす。
ニーズや、トレーニングデータや計算リソースの可用性向上などによって駆動されるセマンティックスは、ロボティクスにおける急速に成長している研究領域である。
論文 参考訳(メタデータ) (2021-01-02T12:34:39Z) - Curiosity Based Reinforcement Learning on Robot Manufacturing Cell [0.0]
強化学習はロボット工学やスケジューリングといったタスクを解くことに成功している。
本稿では,フレキシブルロボット製造セルのスケジューリング制御と好奇心に基づく強化学習を組み合わせた新しい組み合わせを提案する。
論文 参考訳(メタデータ) (2020-11-17T16:19:47Z) - Reinforcement Learning Approaches in Social Robotics [3.9523548427618067]
本稿では,ソーシャルロボティクスにおける強化学習のアプローチについて調査する。
インタラクションは強化学習とソーシャルロボティクスの両方において重要な要素であるため、物理的に具体化されたソーシャルロボティクスとの現実世界のインタラクションには適している。
論文 参考訳(メタデータ) (2020-09-21T08:56:18Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
実世界で収集されたデータによって継続的に自律的に改善できるロボット学習システムに必要な要素について論じる。
本稿では,このようなシステムの特異なインスタンス化を事例として,デクスタラスな操作を事例として提案する。
我々は人間の介入なしに学習できることを実証し、現実世界の3本指の手で様々な視覚ベースのスキルを習得する。
論文 参考訳(メタデータ) (2020-04-27T03:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。