論文の概要: Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits
- arxiv url: http://arxiv.org/abs/2009.09815v1
- Date: Mon, 21 Sep 2020 12:35:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 05:34:25.852355
- Title: Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits
- Title(参考訳): 携帯型uav:スカイリミットのための強化学習
- Authors: M. Mahdi Azari, Atefeh Hajijamali Arani, Fernando Rosas
- Abstract要約: 本稿では,UAVの切断時間,ハンドオーバ速度,エネルギー消費を低減するため,MAB(Multi-armed bandit)アルゴリズムを提案する。
それぞれの性能指標(PI)が、適切な学習パラメータの範囲を採用することにより、どのように改善されるかを示す。
- 参考スコア(独自算出の注目度): 71.28712804110974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A cellular-connected unmanned aerial vehicle (UAV)faces several key
challenges concerning connectivity and energy efficiency. Through a
learning-based strategy, we propose a general novel multi-armed bandit (MAB)
algorithm to reduce disconnectivity time, handover rate, and energy consumption
of UAV by taking into account its time of task completion. By formulating the
problem as a function of UAV's velocity, we show how each of these performance
indicators (PIs) is improved by adopting a proper range of corresponding
learning parameter, e.g. 50% reduction in HO rate as compared to a blind
strategy. However, results reveal that the optimal combination of the learning
parameters depends critically on any specific application and the weights of
PIs on the final objective function.
- Abstract(参考訳): セルラー接続無人航空機(uav)は、接続とエネルギー効率に関するいくつかの重要な課題に直面している。
学習に基づく戦略により,タスク完了時間を考慮して,UAVの切断時間,ハンドオーバ速度,エネルギー消費量を削減できる,汎用的なマルチアームバンディット(MAB)アルゴリズムを提案する。
UAVの速度の関数として問題を定式化することにより、各性能指標(PI)が、適切な学習パラメータの範囲、例えば、ブラインド戦略と比較してHOレートの50%削減を採用することにより、どのように改善されるかを示す。
しかし, 学習パラメータの最適組み合わせは, 特定の応用や最終目的関数におけるpiの重みに依存することが明らかとなった。
関連論文リスト
- Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
本稿では,無人航空機(UAV)を利用した統合型統合学習(FL)における新しい遅延最適化問題について検討する。
ベンチマーク方式と比較して,システム遅延を最大68.54%削減し,高品質な近似解を求めるため,単純かつ効率的な反復アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-01T14:25:24Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
無人航空機は、地上のBSからデータトラフィックをオフロードする代替手段を提供する。
本稿では,地上BSからデータオフロードを行うために,複数のUAVを効率的に利用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T12:36:08Z) - Federated Learning in UAV-Enhanced Networks: Joint Coverage and
Convergence Time Optimization [16.265792031520945]
フェデレートラーニング(FL)には、ローカルデータを転送することなく、共有モデルを協調的にトレーニングする複数のデバイスが含まれる。
FLは通信のオーバーヘッドを減らし、エネルギー資源の少ないUAV強化無線ネットワークにおいて有望な学習方法となる。
この可能性にもかかわらず、UAVに強化されたネットワークにFLを実装することは困難であり、カバー範囲を最大化する従来のUAV配置手法はFL遅延を増大させる。
論文 参考訳(メタデータ) (2023-08-31T17:50:54Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning [7.760962597460447]
本稿では,郊外環境におけるセルラー接続型無人航空機(UAV)の干渉対応共同経路計画と電力配分機構について検討する。
UAVは、そのアップリンクスループットを最大化し、近隣のBSに接続された地上ユーザ機器(UE)への干渉のレベルを最小化することを目的としている。
Q-learning と深層強化学習 (DRL) を併用した逆強化学習 (IRL) による見習い学習手法
論文 参考訳(メタデータ) (2023-06-15T20:50:05Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Federated Learning for UAV Swarms Under Class Imbalance and Power
Consumption Constraints [6.995852507959362]
設計上の制約を考慮しつつ、UAVの利用効率を調査することが不可欠である。
本稿では,各UAVが機械学習分類タスクを遂行する際のUAVスワムの展開について検討する。
論文 参考訳(メタデータ) (2021-08-23T16:10:14Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。