論文の概要: Learning Safe Neural Network Controllers with Barrier Certificates
- arxiv url: http://arxiv.org/abs/2009.09826v1
- Date: Fri, 18 Sep 2020 14:55:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 02:41:47.605582
- Title: Learning Safe Neural Network Controllers with Barrier Certificates
- Title(参考訳): バリア証明書を用いた安全なニューラルネットワークコントローラの学習
- Authors: Hengjun Zhao, Xia Zeng, Taolue Chen, Zhiming Liu and Jim Woodcock
- Abstract要約: 非線形連続力学系に対する制御系を合成するための新しい手法を提案する。
コントローラはニューラルネットワーク(NN)に基づいている
コントローラ-NNとバリア-NNを同時にトレーニングし、ループ内の検証合成を実現する。
- 参考スコア(独自算出の注目度): 6.323932479962133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide a novel approach to synthesize controllers for nonlinear
continuous dynamical systems with control against safety properties. The
controllers are based on neural networks (NNs). To certify the safety property
we utilize barrier functions, which are represented by NNs as well. We train
the controller-NN and barrier-NN simultaneously, achieving a
verification-in-the-loop synthesis. We provide a prototype tool nncontroller
with a number of case studies. The experiment results confirm the feasibility
and efficacy of our approach.
- Abstract(参考訳): 安全特性を制御した非線形連続力学系の制御器を合成する新しい手法を提案する。
コントローラはニューラルネットワーク(NN)に基づいている。
安全性の証明には,NNが表現するバリア関数を利用する。
コントローラ-NNとバリア-NNを同時にトレーニングし、ループ内の検証合成を実現する。
多数のケーススタディを備えたプロトタイプツールのnncontrollerを提供する。
実験の結果,本手法の有効性と有効性を確認した。
関連論文リスト
- Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Structured Deep Neural Network-Based Backstepping Trajectory Tracking Control for Lagrangian Systems [9.61674297336072]
提案したコントローラは、任意の互換性のあるニューラルネットワークパラメータに対してクローズループ安定性を確保することができる。
モデル近似誤差や外乱の存在下では、閉ループ安定性と追従制御性能が保証されることが示されている。
論文 参考訳(メタデータ) (2024-03-01T09:09:37Z) - Provably Safe Neural Network Controllers via Differential Dynamic Logic [2.416907802598482]
NNCS検証のための制御理論の再利用を可能にする最初の一般手法を提案する。
dLの安全な制御エンベロープに基づいて、NN検証によって証明されたNNの仕様を導出する。
本稿では,NNCS の無限時間安全に関する dL 証明によって,仕様に忠実な NNCS の証明が反映されていることを示す。
論文 参考訳(メタデータ) (2024-02-16T16:15:25Z) - Adversarial Training Using Feedback Loops [1.6114012813668932]
ディープニューラルネットワーク(DNN)は、一般化性に制限があるため、敵の攻撃に非常に敏感である。
本稿では制御理論に基づく新しいロバスト化手法を提案する。
フィードバック制御アーキテクチャに基づく新しい逆行訓練アプローチは、フィードバックループ逆行訓練(FLAT)と呼ばれる。
論文 参考訳(メタデータ) (2023-08-23T02:58:02Z) - Reachability Analysis of Neural Network Control Systems [10.023618778236697]
ニューラルネットワーク制御システム(NNCS)の既存の検証アプローチは、限られたタイプのアクティベーション機能でのみ機能する。
本稿では,DeepNNCと呼ばれるリプシッツ最適化に基づくNNCSの検証フレームワークを提案する。
DeepNNCは、幅広いNNCよりも効率と精度の点で優れた性能を示している。
論文 参考訳(メタデータ) (2023-01-28T05:57:37Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
本稿では,ニューラルネットワークを用いた閉ループシステムの安全性検証のための後方到達性アプローチを提案する。
フィードバックループにおけるNNの存在は、その活性化関数の非線形性や、NNモデルは一般に可逆的ではないため、ユニークな問題セットを示す。
フィードフォワードNNで表される制御ポリシを持つ線形系と非線形系のBP過近似を計算するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:17:28Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - BarrierNet: A Safety-Guaranteed Layer for Neural Networks [50.86816322277293]
BarrierNetは、ニューラルコントローラの安全性の制約が環境の変化に適応できるようにする。
本研究では,2次元空間と3次元空間における交通統合やロボットナビゲーションといった一連の制御問題について評価する。
論文 参考訳(メタデータ) (2021-11-22T15:38:11Z) - ShieldNN: A Provably Safe NN Filter for Unsafe NN Controllers [2.227417514684251]
我々は、KBM(Kinematic Bicycle Model)のための新しいクローズドフォーム制御バリア関数(CBF)と関連するコントローラシールドを開発する。
ShieldNNは、非アフィンKBMダイナミクスと直接、ステアリングとベロシティの制約について検討している。
実験により,ShieldNNは複数の障害物が存在する場合のRLトレーニングエピソードの完了率を劇的に向上させることを示した。
論文 参考訳(メタデータ) (2020-06-16T23:38:23Z) - Graph Neural Networks for Decentralized Controllers [171.6642679604005]
自律エージェントで構成される動的システムは、ロボット工学、スマートグリッド、スマートシティなど、多くの関連する問題に現れる。
最適な集中型コントローラは容易に利用できるが、スケーラビリティと実用的な実装の面で制限に直面している。
グラフニューラルネットワーク(GNN)を用いて,データから分散制御系を学習するフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-23T13:51:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。