論文の概要: A Sequential Modelling Approach for Indoor Temperature Prediction and
Heating Control in Smart Buildings
- arxiv url: http://arxiv.org/abs/2009.09847v2
- Date: Thu, 26 Nov 2020 18:43:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 05:34:14.753947
- Title: A Sequential Modelling Approach for Indoor Temperature Prediction and
Heating Control in Smart Buildings
- Title(参考訳): スマートビルにおける室内温度予測と暖房制御のための逐次モデリング手法
- Authors: Yongchao Huang, Hugh Miles, Pengfei Zhang
- Abstract要約: 本稿では,室内温度の予測にデータ駆動統計手法を逐次適用するための学習ベースフレームワークを提案する。
実験では、モデリングアプローチと制御アルゴリズムの有効性を実証し、スマートビルディングアプリケーションにおける混合データ駆動アプローチの有望な可能性を明らかにする。
- 参考スコア(独自算出の注目度): 4.759925918369102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rising availability of large volume data, along with increasing computing
power, has enabled a wide application of statistical Machine Learning (ML)
algorithms in the domains of Cyber-Physical Systems (CPS), Internet of Things
(IoT) and Smart Building Networks (SBN). This paper proposes a learning-based
framework for sequentially applying the data-driven statistical methods to
predict indoor temperature and yields an algorithm for controlling building
heating system accordingly. This framework consists of a two-stage modelling
effort: in the first stage, an univariate time series model (AR) was employed
to predict ambient conditions; together with other control variables, they
served as the input features for a second stage modelling where an multivariate
ML model (XGBoost) was deployed. The models were trained with real world data
from building sensor network measurements, and used to predict future
temperature trajectories. Experimental results demonstrate the effectiveness of
the modelling approach and control algorithm, and reveal the promising
potential of the mixed data-driven approach in smart building applications. By
making wise use of IoT sensory data and ML algorithms, this work contributes to
efficient energy management and sustainability in smart buildings.
- Abstract(参考訳): 大規模データの可用性の向上と計算能力の向上により、Cyber-Physical Systems(CPS)、Internet of Things(IoT)、Smart Building Networks(SBN)といった分野における統計機械学習(ML)アルゴリズムの広範な適用が可能になった。
本稿では,室内温度予測のためのデータ駆動統計手法を逐次に適用する学習ベースのフレームワークを提案する。
このフレームワークは2段階のモデリング作業から成り、第1段階では、環境条件を予測するために不平等時系列モデル(ar)が用いられ、他の制御変数とともに、多変量mlモデル(xgboost)がデプロイされた第2ステージモデリングの入力機能として使用された。
モデルは、センサーネットワークの計測結果から実世界データを使って訓練され、将来の温度軌道を予測するのに使用された。
実験結果は,モデリング手法と制御アルゴリズムの有効性を示し,スマートビルディングアプリケーションにおける混合データ駆動アプローチの有望な可能性を明らかにする。
iotセンサーデータとmlアルゴリズムを賢明に利用することで、スマートビルの効率的なエネルギー管理と持続可能性に貢献します。
関連論文リスト
- Deep Learning-Based Cyber-Attack Detection Model for Smart Grids [6.642400003243118]
監視制御とデータ取得(SCADA)により、受信した負荷データに対するデータ完全性サイバー攻撃(DIA)を防止するために、人工知能に基づく新しいサイバー攻撃検出モデルを開発した。
提案モデルでは、まず回帰モデルを用いて負荷データを予測し、処理後、教師なし学習法を用いて処理データをクラスタ化する。
提案したEE-BiLSTM法は,他の2つの手法と比較して,より堅牢かつ高精度に動作可能である。
論文 参考訳(メタデータ) (2023-12-14T10:54:04Z) - Temperature Balancing, Layer-wise Weight Analysis, and Neural Network
Training [58.20089993899729]
本稿では,直感的で効果的な階層学習手法であるTempBalanceを提案する。
我々は、TempBalanceが通常のSGDと注意深く調整されたスペクトルノルム正規化より著しく優れていることを示す。
また、TempBalanceは最先端のメトリクスやスケジューラよりも優れています。
論文 参考訳(メタデータ) (2023-12-01T05:38:17Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
現在の制御戦略と最適化アルゴリズムでは、そのほとんどはリアルタイムフィードバックから情報を受け取ることに依存している。
本稿では,システム制御のためのシステム特性を同時に構築することによる,ダイナミックな事前知識を組み込む,エンジニアフレンドリな制御戦略フレームワークを提案する。
典型的な制御戦略でシステム制御を加熱するケースでテストしたところ、我々のフレームワークは15%の省エネ性を持っていることがわかった。
論文 参考訳(メタデータ) (2023-01-23T09:07:07Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
疲労損傷を予測するための最大エントロピーの原理に基づくML近傍近似アルゴリズムを開発した。
予測は、他のMLアルゴリズムと同様、高いレベルの精度を達成する。
論文 参考訳(メタデータ) (2022-10-19T12:20:07Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - A data filling methodology for time series based on CNN and (Bi)LSTM
neural networks [0.0]
イタリア・ボルツァーノの監視アパートから得られた時系列データギャップを埋めるための2つのDeep Learningモデルを開発した。
提案手法は, 変動するデータの性質を把握し, 対象時系列の再構成に優れた精度を示す。
論文 参考訳(メタデータ) (2022-04-21T09:40:30Z) - An Intelligent End-to-End Neural Architecture Search Framework for Electricity Forecasting Model Development [4.940941112226529]
本稿では、時系列電気予測モデルの開発のためのインテリジェント自動アーキテクチャサーチ(IAAS)フレームワークを提案する。
提案フレームワークは,ネットワーク機能保存変換操作,強化学習(RL)に基づくネットワーク変換制御,ネットワークスクリーニングの3つの主要コンポーネントを含む。
提案したIAASフレームワークは,精度と安定性の予測において,既存の10のモデルや手法を著しく上回っていることを実証する。
論文 参考訳(メタデータ) (2022-03-25T10:36:27Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Physics Informed Neural Networks for Control Oriented Thermal Modeling
of Buildings [3.1132272756008375]
本稿では,建物の制御指向熱モデル構築のためのデータ駆動型モデリング手法を提案する。
測定データと構築パラメータとともに、これらの建物の熱的挙動を管理する基礎となる物理でニューラルネットワークを符号化する。
論文 参考訳(メタデータ) (2021-11-23T18:27:54Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。