論文の概要: Beyond Identity: What Information Is Stored in Biometric Face Templates?
- arxiv url: http://arxiv.org/abs/2009.09918v1
- Date: Mon, 21 Sep 2020 14:41:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 05:07:45.847455
- Title: Beyond Identity: What Information Is Stored in Biometric Face Templates?
- Title(参考訳): バイオメトリックな顔テンプレートにどんな情報が保存されているか?
- Authors: Philipp Terh\"orst, Daniel F\"ahrmann, Naser Damer, Florian
Kirchbuchner, Arjan Kuijper
- Abstract要約: 顔テンプレートにエンコードされた情報を知ることは、バイアス軽減とプライバシ保護の顔認識技術の開発に役立つ。
2つの公開顔埋め込み実験を行った。
結果は、顔テンプレートから最大74の属性を正確に予測できることを実証した。
- 参考スコア(独自算出の注目度): 13.555831336280407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deeply-learned face representations enable the success of current face
recognition systems. Despite the ability of these representations to encode the
identity of an individual, recent works have shown that more information is
stored within, such as demographics, image characteristics, and social traits.
This threatens the user's privacy, since for many applications these templates
are expected to be solely used for recognition purposes. Knowing the encoded
information in face templates helps to develop bias-mitigating and
privacy-preserving face recognition technologies. This work aims to support the
development of these two branches by analysing face templates regarding 113
attributes. Experiments were conducted on two publicly available face
embeddings. For evaluating the predictability of the attributes, we trained a
massive attribute classifier that is additionally able to accurately state its
prediction confidence. This allows us to make more sophisticated statements
about the attribute predictability. The results demonstrate that up to 74
attributes can be accurately predicted from face templates. Especially
non-permanent attributes, such as age, hairstyles, haircolors, beards, and
various accessories, found to be easily-predictable. Since face recognition
systems aim to be robust against these variations, future research might build
on this work to develop more understandable privacy preserving solutions and
build robust and fair face templates.
- Abstract(参考訳): 深層学習された顔表現は、現在の顔認識システムの成功を可能にする。
これらの表現が個人のアイデンティティをエンコードする能力にもかかわらず、近年の研究では、人口統計、画像の特徴、社会的特徴など、より多くの情報が格納されていることが示されている。
多くのアプリケーションでは、これらのテンプレートは認識目的にのみ使用されることが期待されているため、これはユーザーのプライバシーを脅かす。
顔テンプレートにエンコードされた情報を知ることは、バイアス軽減とプライバシー保護のための顔認識技術の開発に役立つ。
本研究は,113属性に関する顔テンプレートを解析することにより,これら2つのブランチの開発を支援することを目的とする。
2つの公開顔埋め込み実験を行った。
属性の予測可能性を評価するために、予測信頼性を正確に記述できる巨大な属性分類器を訓練した。
これにより、属性の予測可能性に関するより洗練されたステートメントが作成できます。
その結果,顔テンプレートから最大74の属性を正確に予測できることがわかった。
特に、年齢、髪型、髪の色、ひげ、様々なアクセサリーなどの非永続的な属性は容易に予測可能である。
顔認識システムは、これらのバリエーションに対して堅牢であることを目指しているため、将来の研究は、より理解しやすいプライバシー保護ソリューションを開発し、堅牢で公正な顔テンプレートを構築するためにこの研究を基礎とするかもしれない。
関連論文リスト
- Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
この脆弱性を解決するために,ハードウェアレベルの顔識別手法を提案する。
また、プライバシ保存画像、フェイスヒートマップ、およびパブリックデータセットからの参照顔イメージを入力として、新しい顔を生成する匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T19:28:04Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - Robustness Disparities in Face Detection [64.71318433419636]
本稿では,その顔検出システムの詳細なベンチマークとして,商業モデルと学術モデルのノイズに対する頑健性について検討する。
すべてのデータセットやシステム全体で、$textitmasculineである個人の写真が$textitdarker skin type$$$、$textitdarker$、または$textitdim lighting$は、他のIDよりもエラーの影響を受けやすい。
論文 参考訳(メタデータ) (2022-11-29T05:22:47Z) - Explaining Bias in Deep Face Recognition via Image Characteristics [9.569575076277523]
2つのデータセットのセキュリティとユーザビリティの観点から,10種類の最先端の顔認識モデルを評価し,その妥当性を比較した。
次に,画像特性がモデル性能に与える影響を解析する。
論文 参考訳(メタデータ) (2022-08-23T17:18:23Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - An Attack on Feature Level-based Facial Soft-biometric Privacy
Enhancement [13.780253190395715]
特徴レベルに基づく顔ソフトバイオメトリック・プライバシ・エンハンスメント技術に対する攻撃を導入する。
プライバシーの強化を回避することができ、性別を最大90%の精度で正しく分類することができる。
論文 参考訳(メタデータ) (2021-11-24T10:41:15Z) - Face Age Progression With Attribute Manipulation [11.859913430860335]
FAWAM (Face Age Progression with Attribute Manipulation) を提唱する。
タスクをボトムアップ方式で,顔年齢の進行と顔属性の操作という2つのサブモジュールとして扱う。
顔の老化には、年齢に応じた顔の変化をモデル化できるピラミッド生成対向ネットワークを備えた属性意識型顔の老化モデルを用いる。
論文 参考訳(メタデータ) (2021-06-14T18:26:48Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z) - Unsupervised Enhancement of Soft-biometric Privacy with Negative Face
Recognition [13.555831336280407]
テンプレートレベルでのソフトバイオメトリック・プライバシを高める新しい顔認識手法である負顔認識(NFR)を提案する。
当社のアプローチでは、プライバシに敏感なラベルは必要とせず、事前定義された属性に限らず、より包括的なプライバシ保護を提供します。
論文 参考訳(メタデータ) (2020-02-21T08:37:16Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
最新のオープンソースの顔認識システムであるArcFaceを、100万枚以上の散らばった画像を用いた大規模な顔識別実験で監査する。
モデルのトレーニングデータには79.71%、存在しない人には75.73%のランク1顔認証精度がある。
論文 参考訳(メタデータ) (2020-01-09T15:50:28Z) - PrivacyNet: Semi-Adversarial Networks for Multi-attribute Face Privacy [15.301150389512744]
画像手法を用いて, 顔画像に対するソフトバイオメトリック・プライバシを実現する手法を開発した。
画像摂動は、GANをベースとしたSAN(Semi-Adversarial Network)を用いて行われる。
PrivacyNetでは、入力された顔画像に難読化される属性を選択することができる。
論文 参考訳(メタデータ) (2020-01-02T18:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。