TempoKGAT: A Novel Graph Attention Network Approach for Temporal Graph Analysis
- URL: http://arxiv.org/abs/2408.16391v1
- Date: Thu, 29 Aug 2024 09:54:46 GMT
- Title: TempoKGAT: A Novel Graph Attention Network Approach for Temporal Graph Analysis
- Authors: Lena Sasal, Daniel Busby, Abdenour Hadid,
- Abstract summary: This paper presents a new type of graph attention network, called TempoKGAT, which combines time-decaying weight and a selective neighbor aggregation mechanism on the spatial domain.
We evaluate our approach on multiple datasets from the traffic, energy, and health sectors involvingtemporal data.
- Score: 3.5707423185282656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNN) have shown significant capabilities in handling structured data, yet their application to dynamic, temporal data remains limited. This paper presents a new type of graph attention network, called TempoKGAT, which combines time-decaying weight and a selective neighbor aggregation mechanism on the spatial domain, which helps uncover latent patterns in the graph data. In this approach, a top-k neighbor selection based on the edge weights is introduced to represent the evolving features of the graph data. We evaluated the performance of our TempoKGAT on multiple datasets from the traffic, energy, and health sectors involving spatio-temporal data. We compared the performance of our approach to several state-of-the-art methods found in the literature on several open-source datasets. Our method shows superior accuracy on all datasets. These results indicate that TempoKGAT builds on existing methodologies to optimize prediction accuracy and provide new insights into model interpretation in temporal contexts.
Related papers
- FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - From random-walks to graph-sprints: a low-latency node embedding
framework on continuous-time dynamic graphs [4.372841335228306]
We propose a framework for continuous-time-dynamic-graphs (CTDGs) that has low latency and is competitive with state-of-the-art, higher latency models.
In our framework, time-aware node embeddings summarizing multi-hop information are computed using only single-hop operations on the incoming edges.
We demonstrate that our graph-sprints features, combined with a machine learning, achieve competitive performance.
arXiv Detail & Related papers (2023-07-17T12:25:52Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
We propose a decoupled training method, which includes a graph generating module and a GNNs forecasting module.
First, we use Graphical Lasso (or GraphLASSO) to directly exploit the sparsity pattern from data to build graph structures.
Second, we fit these graph structures and the input data into a Graph Convolutional Recurrent Network (GCRN) to train a forecasting model.
arXiv Detail & Related papers (2023-06-29T16:48:00Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
We propose a novel temporal dynamic neural graph network (TodyNet) that can extract hidden-temporal dependencies without undefined graph structure.
The experiments on 26 UEA benchmark datasets illustrate that the proposed TodyNet outperforms existing deep learning-based methods in the MTSC tasks.
arXiv Detail & Related papers (2023-04-11T09:21:28Z) - FTM: A Frame-level Timeline Modeling Method for Temporal Graph
Representation Learning [47.52733127616005]
We propose a Frame-level Timeline Modeling (FTM) method that helps to capture both short-term and long-term features.
Our method can be easily assembled with most temporal GNNs.
arXiv Detail & Related papers (2023-02-23T06:53:16Z) - Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph
Attention [20.52864145999387]
Long-term tensor-temporal forecasting (LSTF) makes use of long-term dependency between spatial and temporal domains, contextual information, and inherent pattern in the data.
We propose new graph models to represent the contextual information of each node and the long-term parking revealed-temporal data dependency structure.
Our proposed approaches significantly improve the performance of existing graph neural network models in LSTF prediction tasks.
arXiv Detail & Related papers (2022-04-23T06:51:37Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - From Static to Dynamic Node Embeddings [61.58641072424504]
We introduce a general framework for leveraging graph stream data for temporal prediction-based applications.
Our proposed framework includes novel methods for learning an appropriate graph time-series representation.
We find that the top-3 temporal models are always those that leverage the new $epsilon$-graph time-series representation.
arXiv Detail & Related papers (2020-09-21T16:48:29Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.