Semantic Workflows and Machine Learning for the Assessment of Carbon
Storage by Urban Trees
- URL: http://arxiv.org/abs/2009.10263v1
- Date: Tue, 22 Sep 2020 01:30:29 GMT
- Title: Semantic Workflows and Machine Learning for the Assessment of Carbon
Storage by Urban Trees
- Authors: Juan Carrillo, Daniel Garijo, Mark Crowley, Rober Carrillo, Yolanda
Gil, Katherine Borda
- Abstract summary: This study estimates carbon storage for a region in Africa following the guidelines from the Intergovernmental Panel on Climate Change (IPCC)
To the best of our knowledge, this is the first study that estimates carbon storage for a region in Africa following the guidelines from the Intergovernmental Panel on Climate Change (IPCC)
- Score: 3.7326934284216877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate science is critical for understanding both the causes and
consequences of changes in global temperatures and has become imperative for
decisive policy-making. However, climate science studies commonly require
addressing complex interoperability issues between data, software, and
experimental approaches from multiple fields. Scientific workflow systems
provide unparalleled advantages to address these issues, including
reproducibility of experiments, provenance capture, software reusability and
knowledge sharing. In this paper, we introduce a novel workflow with a series
of connected components to perform spatial data preparation, classification of
satellite imagery with machine learning algorithms, and assessment of carbon
stored by urban trees. To the best of our knowledge, this is the first study
that estimates carbon storage for a region in Africa following the guidelines
from the Intergovernmental Panel on Climate Change (IPCC).
Related papers
- Characterizing climate pathways using feature importance on echo state
networks [0.0]
echo state network (ESN) is a computationally efficient neural network variation designed for temporal data.
ESNs are non-interpretable black-box models, which poses a hurdle for understanding variable relationships.
We conduct a simulation study to assess and compare the feature importance techniques, and we demonstrate the approach on reanalysis climate data.
arXiv Detail & Related papers (2023-10-12T16:55:04Z) - ClimateLearn: Benchmarking Machine Learning for Weather and Climate
Modeling [20.63843548201849]
ClimateLearn is an open-source library that vastly simplifies the training and evaluation of machine learning models for data-driven climate science.
It is the first large-scale, open-source effort for bridging research in weather and climate modeling with modern machine learning systems.
arXiv Detail & Related papers (2023-07-04T20:36:01Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - AI for Global Climate Cooperation: Modeling Global Climate Negotiations,
Agreements, and Long-Term Cooperation in RICE-N [75.67460895629348]
Achieving long-term cooperation on climate change mitigation with n strategic agents poses a complex game-theoretic problem.
We introduce RICE-N, a multi-region integrated assessment model that simulates the global climate and economy.
We describe how to use multi-agent reinforcement learning to train rational agents using RICE-N.
arXiv Detail & Related papers (2022-08-15T04:38:06Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Applications of physics-informed scientific machine learning in
subsurface science: A survey [64.0476282000118]
Geosystems are geological formations altered by humans activities such as fossil energy exploration, waste disposal, geologic carbon sequestration, and renewable energy generation.
The responsible use and exploration of geosystems are thus critical to the geosystem governance, which in turn depends on the efficient monitoring, risk assessment, and decision support tools for practical implementation.
Fast advances in machine learning algorithms and novel sensing technologies in recent years have presented new opportunities for the subsurface research community to improve the efficacy and transparency of geosystem governance.
arXiv Detail & Related papers (2021-04-10T13:40:22Z) - CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims [4.574830585715129]
We introduce CLIMATE-FEVER, a new dataset for verification of climate change-related claims.
We adapt the methodology of FEVER [1], the largest dataset of artificially designed claims, to real-life claims collected from the Internet.
We discuss the surprising, subtle complexity of modeling real-world climate-related claims within the textscfever framework.
arXiv Detail & Related papers (2020-12-01T16:32:54Z) - HECT: High-Dimensional Ensemble Consistency Testing for Climate Models [1.7587442088965226]
Climate models play a crucial role in understanding the effect of environmental changes on climate to help mitigate climate risks and inform decisions.
Large global climate models such as the Community Earth System Model (CESM), are very complex with millions of lines of code describing interactions of the atmosphere, land, oceans, and ice.
Our work uses probabilistics like tree-based algorithms and deep neural networks to perform a statistically rigorous goodness-of-fit test of high-dimensional and man-made data.
arXiv Detail & Related papers (2020-10-08T15:16:16Z) - Green Algorithms: Quantifying the carbon footprint of computation [0.0]
We present a framework to estimate the carbon footprint of any computational task in a standardised and reliable way.
Metrics to interpret and contextualise greenhouse gas emissions are defined, including the equivalent distance travelled by car or plane.
We develop a freely available online tool, Green Algorithms, which enables a user to estimate and report the carbon footprint of their computation.
arXiv Detail & Related papers (2020-07-15T11:05:33Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.