論文の概要: Quantum Assisted Eigensolver
- arxiv url: http://arxiv.org/abs/2009.11001v2
- Date: Mon, 12 Oct 2020 12:33:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-01 04:53:49.962781
- Title: Quantum Assisted Eigensolver
- Title(参考訳): 量子アシスト型固有溶媒装置
- Authors: Kishor Bharti
- Abstract要約: 本研究では,ハミルトニアンの基底状態と基底状態エネルギーを近似するハイブリッド量子古典アルゴリズムを提案する。
アルゴリズムの量子部分からの出力を古典コンピュータの入力として利用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a hybrid quantum-classical algorithm for approximating the ground
state and ground state energy of a Hamiltonian. Once the Ansatz has been
decided, the quantum part of the algorithm involves the calculation of two
overlap matrices. The output from the quantum part of the algorithm is utilized
as input for the classical computer. The classical part of the algorithm is a
quadratically constrained quadratic program with a single quadratic equality
constraint. Unlike the variational quantum eigensolver algorithm, our algorithm
does not have any classical-quantum feedback loop. Using convex relaxation
techniques, we provide an efficiently computable lower bound to the classical
optimization program. Furthermore, using results from Bar-On et al. (Journal of
Optimization Theory and Applications, 82(2):379--386, 1994), we provide a
sufficient condition for a local minimum to be a global minimum. A solver can
use such a condition as a stopping criterion.
- Abstract(参考訳): 本研究では,ハミルトニアンの基底状態と基底状態エネルギーを近似するハイブリッド量子古典アルゴリズムを提案する。
アンザッツが決定されると、アルゴリズムの量子部分は2つの重なり合う行列の計算を伴う。
アルゴリズムの量子部分からの出力を古典コンピュータの入力として利用する。
アルゴリズムの古典的な部分は、単一の2次等式制約を持つ2次プログラムである。
変分量子固有解法アルゴリズムとは異なり、我々のアルゴリズムは古典量子フィードバックループを持たない。
凸緩和法を用いて,古典的最適化プログラムに効率的に計算可能な下限を与える。
さらに、Bar-On et al. (Journal of Optimization Theory and Applications, 82(2):379--386, 1994)の結果を用いて、局所最小値が大域最小値となる十分条件を提供する。
ソルバは、そのような条件を停止基準として使用できる。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
我々は、反復最大量子アルゴリズム(Iterative Maximum Quantum Algorithms)と呼ばれる、量子最適化のための新しいハイブリッドアプローチのクラスについて研究する。
深度$p=1$のQAOAの場合、このアルゴリズムはMISの古典的欲求アルゴリズムと全く同じ操作と選択を行う。
論文 参考訳(メタデータ) (2023-09-22T18:00:03Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
本稿では,二項問題の近似解を計算するためのハイブリッド量子古典アルゴリズムを提案する。
我々は、重み付き最大カットまたはイジング・ハミルトン演算子をブロック符号化するユニタリおよびエルミート演算子を実装するために浅深さ量子回路を用いる。
この作用素の変動量子状態への期待を測定すると、量子系の変動エネルギーが得られる。
論文 参考訳(メタデータ) (2023-06-10T23:28:13Z) - A quantum advantage over classical for local max cut [48.02822142773719]
量子最適化近似アルゴリズム(QAOA)は、次数3グラフ上の古典的手法に匹敵する計算上の優位性を持つ。
結果として、最先端の量子ハードウェアに関係している小規模量子計算でさえ、比較可能な単純な古典よりも大きな優位性を持つ可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-17T16:42:05Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
本稿では,n+1$ qubitsしか使用しないGoemans-Williamsonアルゴリズムの変分量子アルゴリズムを提案する。
補助量子ビット上で適切にパラメータ化されたユニタリ条件として目的行列を符号化することにより、効率的な最適化を実現する。
各種NPハード問題に対して,Goemans-Williamsonアルゴリズムの量子的効率的な実装を考案し,提案プロトコルの有効性を実証する。
論文 参考訳(メタデータ) (2022-06-30T03:15:23Z) - Quantum Interior Point Methods for Semidefinite Optimization [0.16874375111244327]
半定値最適化問題に対する2つの量子内点法を提案する。
第1のスキームは、不正確な探索方向を計算し、実現可能な点のみを探索することが保証されない。
第二のスキームはニュートン線形系のヌルスペース表現を用いて、不正確な探索方向であっても実現可能であることを保証する。
論文 参考訳(メタデータ) (2021-12-11T16:52:25Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
有名な最小二乗モンテカルロ (LSM) アルゴリズムは、線形最小二乗回帰とモンテカルロシミュレーションを組み合わせることで、最適停止理論の問題を解決する。
プロセスへの量子アクセス、最適な停止時間を計算するための量子回路、モンテカルロの量子技術に基づく量子LSMを提案する。
論文 参考訳(メタデータ) (2021-11-30T12:21:41Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms [0.0]
分割・対数手法を用いて、元の問題を小さな問題の集合に還元する。
この手法は任意のQUBOインスタンスに適用でき、全古典的またはハイブリッドな量子古典的アプローチにつながる。
論文 参考訳(メタデータ) (2021-01-19T19:00:40Z) - Iterative Quantum Assisted Eigensolver [0.0]
我々は、ハミルトニアン基底状態を近似するハイブリッド量子古典アルゴリズムを提供する。
我々のアルゴリズムは、現在の量子コンピュータに適した方法で、強力なKrylov部分空間法に基づいている。
論文 参考訳(メタデータ) (2020-10-12T12:25:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。