論文の概要: Iterative Quantum Assisted Eigensolver
- arxiv url: http://arxiv.org/abs/2010.05638v2
- Date: Wed, 1 Sep 2021 10:45:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-29 07:18:29.079298
- Title: Iterative Quantum Assisted Eigensolver
- Title(参考訳): 反復量子支援固有解法
- Authors: Kishor Bharti, Tobias Haug
- Abstract要約: 我々は、ハミルトニアン基底状態を近似するハイブリッド量子古典アルゴリズムを提供する。
我々のアルゴリズムは、現在の量子コンピュータに適した方法で、強力なKrylov部分空間法に基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of estimating the ground state of Hamiltonians is an important
problem in physics with numerous applications ranging from solid-state physics
to combinatorial optimization. We provide a hybrid quantum-classical algorithm
for approximating the ground state of a Hamiltonian that builds on the powerful
Krylov subspace method in a way that is suitable for current quantum computers.
Our algorithm systematically constructs the Ansatz using any given choice of
the initial state and the unitaries describing the Hamiltonian. The only task
of the quantum computer is to measure overlaps and no feedback loops are
required. The measurements can be performed efficiently on current quantum
hardware without requiring any complicated measurements such as the Hadamard
test. Finally, a classical computer solves a well characterized quadratically
constrained optimization program. Our algorithm can reuse previous measurements
to calculate the ground state of a wide range of Hamiltonians without requiring
additional quantum resources. Further, we demonstrate our algorithm for solving
problems consisting of thousands of qubits. The algorithm works for almost
every random choice of the initial state and circumvents the barren plateau
problem.
- Abstract(参考訳): ハミルトニアンの基底状態の推定のタスクは、固体物理学から組合せ最適化まで、多くの応用を含む物理学において重要な問題である。
我々は,現在の量子コンピュータに適した方法で,強力なクリロフ部分空間法に基づくハミルトニアン基底状態を近似するハイブリッド量子古典アルゴリズムを提案する。
本アルゴリズムは初期状態の任意の選択とハミルトニアンを記述するユニタリを用いてansatzを体系的に構成する。
量子コンピュータの唯一のタスクは重なりを測定することであり、フィードバックループは不要である。
測定は、アダマールテストのような複雑な測定を必要とすることなく、現在の量子ハードウェア上で効率的に行うことができる。
最後に、古典コンピュータは、よく特徴付けられる二次制約付き最適化プログラムを解く。
我々のアルゴリズムは、追加の量子資源を必要とせずに、以前の測定を再利用して、幅広いハミルトンの基底状態を計算することができる。
さらに,数千の量子ビットからなる問題を解くアルゴリズムを実証する。
このアルゴリズムは初期状態のほとんど全てのランダムな選択に対応し、不毛台地問題を回避する。
関連論文リスト
- Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
本稿では,二項問題の近似解を計算するためのハイブリッド量子古典アルゴリズムを提案する。
我々は、重み付き最大カットまたはイジング・ハミルトン演算子をブロック符号化するユニタリおよびエルミート演算子を実装するために浅深さ量子回路を用いる。
この作用素の変動量子状態への期待を測定すると、量子系の変動エネルギーが得られる。
論文 参考訳(メタデータ) (2023-06-10T23:28:13Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
ハミルトン系の基底状態を作成するために,改良された反復量子アルゴリズムを提案する。
提案手法には,各イテレーションにおける成功確率の向上,測定精度に依存しないサンプリングの複雑さ,ゲートの複雑さの低減,およびアシラリー状態が十分に準備された場合の量子資源のみを必要とするという利点がある。
論文 参考訳(メタデータ) (2022-10-16T05:57:43Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
本稿では,ロバストフィッティングのためのハイブリッド量子古典アルゴリズムを提案する。
私たちのコアコントリビューションは、整数プログラムの列を解く、新しい堅牢な適合式である。
実際の量子コンピュータを用いて得られた結果について述べる。
論文 参考訳(メタデータ) (2022-01-25T05:59:24Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - NISQ Algorithm for Hamiltonian Simulation via Truncated Taylor Series [0.0]
ノイズの多い中間スケール量子(NISQ)アルゴリズムは、現在利用可能な量子ハードウェアを効果的に利用することを目的としている。
我々は既存のアルゴリズムの利点を共有し、いくつかの欠点を緩和する新しいアルゴリズムであるTorylor量子シミュレータ(TTQS)を提案する。
我々のアルゴリズムは古典的量子フィードバックループを持たず、建設によって不規則な高原問題をバイパスする。
論文 参考訳(メタデータ) (2021-03-09T15:48:48Z) - Quantum Assisted Eigensolver [0.0]
本研究では,ハミルトニアンの基底状態と基底状態エネルギーを近似するハイブリッド量子古典アルゴリズムを提案する。
アルゴリズムの量子部分からの出力を古典コンピュータの入力として利用する。
論文 参考訳(メタデータ) (2020-09-23T08:33:18Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - Density functionals and Kohn-Sham potentials with minimal wavefunction
preparations on a quantum computer [0.0]
量子コンピュータの潜在的な応用の1つは、量子化学システムを解くことである。
本稿では,十分に強力な量子コンピュータから,機械学習モデルとしての正確な機能を得る方法を示す。
論文 参考訳(メタデータ) (2020-08-12T22:50:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。