Fault-Tolerant Operation of a Quantum Error-Correction Code
- URL: http://arxiv.org/abs/2009.11482v2
- Date: Thu, 7 Jan 2021 18:52:27 GMT
- Title: Fault-Tolerant Operation of a Quantum Error-Correction Code
- Authors: Laird Egan, Dripto M. Debroy, Crystal Noel, Andrew Risinger, Daiwei
Zhu, Debopriyo Biswas, Michael Newman, Muyuan Li, Kenneth R. Brown, Marko
Cetina, Christopher Monroe
- Abstract summary: Quantum error correction protects fragile quantum information by encoding it into a larger quantum system.
Fault-tolerant circuits contain the spread of errors while operating the logical qubit.
We show that fault-tolerant circuits enable highly accurate logical primitives in current quantum systems.
- Score: 1.835073691235972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction protects fragile quantum information by encoding it
into a larger quantum system. These extra degrees of freedom enable the
detection and correction of errors, but also increase the operational
complexity of the encoded logical qubit. Fault-tolerant circuits contain the
spread of errors while operating the logical qubit, and are essential for
realizing error suppression in practice. While fault-tolerant design works in
principle, it has not previously been demonstrated in an error-corrected
physical system with native noise characteristics. In this work, we
experimentally demonstrate fault-tolerant preparation, measurement, rotation,
and stabilizer measurement of a Bacon-Shor logical qubit using 13 trapped ion
qubits. When we compare these fault-tolerant protocols to non-fault tolerant
protocols, we see significant reductions in the error rates of the logical
primitives in the presence of noise. The result of fault-tolerant design is an
average state preparation and measurement error of 0.6% and a Clifford gate
error of 0.3% after error correction. Additionally, we prepare magic states
with fidelities exceeding the distillation threshold, demonstrating all of the
key single-qubit ingredients required for universal fault-tolerant operation.
These results demonstrate that fault-tolerant circuits enable highly accurate
logical primitives in current quantum systems. With improved two-qubit gates
and the use of intermediate measurements, a stabilized logical qubit can be
achieved.
Related papers
- Analysis of Maximum Threshold and Quantum Security for Fault-Tolerant
Encoding and Decoding Scheme Base on Steane Code [10.853582091917236]
The original Steane code is not fault-tolerant because the CNOT gates in an encoded block may cause error propagation.
We first propose a fault-tolerant encoding and decoding scheme, which analyzes all possible errors caused by each quantum gate in an error-correction period.
We then provide the fault-tolerant scheme of the universal quantum gate set, including fault-tolerant preparation and verification of ancillary states.
arXiv Detail & Related papers (2024-03-07T07:46:03Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Fault-tolerant operation of a logical qubit in a diamond quantum
processor [0.21670084965090575]
We demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond.
Our realization of fault-tolerant protocols on the logical-qubit level is a key step towards large-scale quantum information processing.
arXiv Detail & Related papers (2021-08-03T17:39:25Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Optical demonstration of quantum fault-tolerant threshold [2.6098148548199047]
A major challenge in practical quantum computation is the ineludible errors caused by the interaction of quantum systems with their environment.
Fault-tolerant schemes, in which logical qubits are encoded by several physical qubits, enable correct output of logical qubits under the presence of errors.
Here, we experimentally demonstrate the existence of the threshold in a special fault-tolerant protocol.
arXiv Detail & Related papers (2020-12-16T13:23:29Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.