論文の概要: Parsimonious Feature Extraction Methods: Extending Robust Probabilistic
Projections with Generalized Skew-t
- arxiv url: http://arxiv.org/abs/2009.11499v1
- Date: Thu, 24 Sep 2020 05:53:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 05:16:46.573823
- Title: Parsimonious Feature Extraction Methods: Extending Robust Probabilistic
Projections with Generalized Skew-t
- Title(参考訳): 類似特徴抽出法:一般化スキューtによるロバスト確率射影の拡張
- Authors: Dorota Toczydlowska, Gareth W. Peters, Pavel V. Shevchenko
- Abstract要約: 本稿では,学生の確率的主成分法に新たな一般化を提案する。
この新しいフレームワークは、観測データにおける端尾依存性の群をモデル化するための、より柔軟なアプローチを提供する。
新しいフレームワークの適用性は、最も高い市場資本を持つ暗号通貨からなるデータセットに説明されている。
- 参考スコア(独自算出の注目度): 0.8336315962271392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel generalisation to the Student-t Probabilistic Principal
Component methodology which: (1) accounts for an asymmetric distribution of the
observation data; (2) is a framework for grouped and generalised
multiple-degree-of-freedom structures, which provides a more flexible approach
to modelling groups of marginal tail dependence in the observation data; and
(3) separates the tail effect of the error terms and factors. The new feature
extraction methods are derived in an incomplete data setting to efficiently
handle the presence of missing values in the observation vector. We discuss
various special cases of the algorithm being a result of simplified assumptions
on the process generating the data. The applicability of the new framework is
illustrated on a data set that consists of crypto currencies with the highest
market capitalisation.
- Abstract(参考訳): 本研究では,(1)観察データの非対称分布を考慮に入れ,(2)観察データにおける辺縁依存性の群をモデル化するための,より柔軟なアプローチを提供する多自由度構造をグループ化し,(3)誤差項と要因の尾効果を分離する,学生t確率的主成分方法論の新たな一般化を提案する。
新たな特徴抽出手法は不完全なデータセットから導出され、観測ベクトルにおける欠落値の存在を効率的に処理する。
本稿では,データ生成過程における単純な仮定の結果として,アルゴリズムの様々な特殊事例について考察する。
新しいフレームワークの適用性は、最も高い市場資本を持つ暗号通貨からなるデータセットに説明されている。
関連論文リスト
- Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - Data thinning for convolution-closed distributions [2.299914829977005]
本稿では,観測を2つ以上の独立した部分に分割する手法であるデータ薄型化を提案する。
教師なし学習手法の結果の検証には,データの薄化が有効であることを示す。
論文 参考訳(メタデータ) (2023-01-18T02:47:41Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Query-Adaptive Predictive Inference with Partial Labels [0.0]
ブラックボックス予測モデル上に部分的にラベル付けされたデータのみを用いて予測集合を構築する新しい手法を提案する。
我々の実験は、予測セット構築の有効性と、よりフレキシブルなユーザ依存損失フレームワークの魅力を強調した。
論文 参考訳(メタデータ) (2022-06-15T01:48:42Z) - Scalable Regularised Joint Mixture Models [2.0686407686198263]
多くの応用において、データは異なる基底分布を持つ潜在群にまたがるという意味で不均一である。
我々は,(i)明示的多変量特徴分布,(ii)高次元回帰モデル,(iii)潜在群ラベルの連成学習を可能にする異種データに対するアプローチを提案する。
このアプローチは明らかに高次元において有効であり、計算効率のためのデータ削減と、特徴数が大きければ鍵信号を保持する再重み付けスキームを組み合わせる。
論文 参考訳(メタデータ) (2022-05-03T13:38:58Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - Explaining a Series of Models by Propagating Local Feature Attributions [9.66840768820136]
複数の機械学習モデルを含むパイプラインは、多くの領域でパフォーマンスが向上するが、理解が難しい。
Shapley値への接続に基づいて、モデルの複雑なパイプラインを通じてローカル機能属性を伝播させるフレームワークを紹介します。
本フレームワークにより,アルツハイマー病および乳癌の組織学的診断における遺伝子発現特徴群に基づく高次結論の導出が可能となった。
論文 参考訳(メタデータ) (2021-04-30T22:20:58Z) - Probabilistic Simplex Component Analysis [66.30587591100566]
PRISMは、データ循環記述のシンプルさの頂点をデータから識別する確率論的シンプルコンポーネント分析手法である。
この問題には多様な応用があり、最も注目すべきはリモートセンシングにおけるハイパースペクトルアンミックスと機械学習における非負行列分解である。
論文 参考訳(メタデータ) (2021-03-18T05:39:00Z) - Functional Regularization for Representation Learning: A Unified
Theoretical Perspective [27.93916012334704]
教師なしおよび自己教師なしの学習アプローチは、下流予測タスクの表現を学習するための重要なツールとなっている。
本稿では、ラベルなしデータを用いて学習可能な関数を通して表現に正規化を付与するものとして、このようなアプローチがいくつか考えられる統一的な視点を示す。
本稿では,これらの手法のサンプル複雑性を分析するための識別的理論的枠組みを提案し,学習可能な正規化関数を実現するために(Balcan and Blum, 2010)の枠組みを一般化する。
論文 参考訳(メタデータ) (2020-08-06T04:06:04Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。