論文の概要: Probabilistic Simplex Component Analysis
- arxiv url: http://arxiv.org/abs/2103.10027v1
- Date: Thu, 18 Mar 2021 05:39:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-19 13:55:27.048359
- Title: Probabilistic Simplex Component Analysis
- Title(参考訳): 確率的単純成分分析
- Authors: Ruiyuan Wu, Wing-Kin Ma, Yuening Li, Anthony Man-Cho So, and Nicholas
D. Sidiropoulos
- Abstract要約: PRISMは、データ循環記述のシンプルさの頂点をデータから識別する確率論的シンプルコンポーネント分析手法である。
この問題には多様な応用があり、最も注目すべきはリモートセンシングにおけるハイパースペクトルアンミックスと機械学習における非負行列分解である。
- 参考スコア(独自算出の注目度): 66.30587591100566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents PRISM, a probabilistic simplex component analysis
approach to identifying the vertices of a data-circumscribing simplex from
data. The problem has a rich variety of applications, the most notable being
hyperspectral unmixing in remote sensing and non-negative matrix factorization
in machine learning. PRISM uses a simple probabilistic model, namely, uniform
simplex data distribution and additive Gaussian noise, and it carries out
inference by maximum likelihood. The inference model is sound in the sense that
the vertices are provably identifiable under some assumptions, and it suggests
that PRISM can be effective in combating noise when the number of data points
is large. PRISM has strong, but hidden, relationships with simplex volume
minimization, a powerful geometric approach for the same problem. We study
these fundamental aspects, and we also consider algorithmic schemes based on
importance sampling and variational inference. In particular, the variational
inference scheme is shown to resemble a matrix factorization problem with a
special regularizer, which draws an interesting connection to the matrix
factorization approach. Numerical results are provided to demonstrate the
potential of PRISM.
- Abstract(参考訳): 本研究では,データからsimplexを記述するデータ循環の頂点を同定する,確率論的simplexコンポーネント分析手法prismを提案する。
この問題には多様な応用があり、最も注目すべきはリモートセンシングにおけるハイパースペクトルアンミックスと機械学習における非負行列分解である。
PRISMは単純な確率モデル、すなわち一様単純データ分布と加法ガウス雑音を使い、最大確率で推論を行う。
推定モデルは、いくつかの仮定の下で頂点が確実に識別可能であるという意味で健全であり、データ点数が大きい場合、プリズムがノイズと戦うのに有効であることを示唆する。
PRISMは強いが隠れており、同じ問題に対する強力な幾何学的アプローチである単純な体積最小化と関係がある。
これらの基本的側面を考察し,重要サンプリングと変分推論に基づくアルゴリズムスキームについて考察する。
特に、変分推論スキームは、行列因数分解のアプローチと興味深い関係を持つ特別な正則化器を持つ行列因数分解問題に類似していることが示される。
PRISMの可能性を示す数値的な結果が提供される。
関連論文リスト
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Anomaly Detection Under Uncertainty Using Distributionally Robust
Optimization Approach [0.9217021281095907]
異常検出は、大多数のパターンに従わないデータポイントを見つける問題として定義される。
1クラスのサポートベクトルマシン(SVM)メソッドは、通常のデータポイントと異常を区別するための決定境界を見つけることを目的としている。
誤分類の確率が低い分布的に頑健な確率制約モデルを提案する。
論文 参考訳(メタデータ) (2023-12-03T06:13:22Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean
Estimation [8.9598796481325]
本稿では, アルゴリズムと計算複雑性の両面において, 異なる統計問題に対する観測結果について検討する。
プライベートスパース平均推定のための情報計算ギャップを確立する。
また、プライバシーによって引き起こされる情報計算のギャップを、いくつかの統計や学習問題に対して証明する。
論文 参考訳(メタデータ) (2022-11-01T20:03:41Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Random Manifold Sampling and Joint Sparse Regularization for Multi-label
Feature Selection [0.0]
本稿では,$ell_2,1$および$ell_F$正規化の連立制約付き最適化問題を解くことで,最も関連性の高いいくつかの特徴を得ることができる。
実世界のデータセットの比較実験により,提案手法が他の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-04-13T15:06:12Z) - Minimax Estimation of Linear Functions of Eigenvectors in the Face of
Small Eigen-Gaps [95.62172085878132]
固有ベクトル摂動解析は様々な統計データ科学の応用において重要な役割を果たす。
未知の固有ベクトルの任意の線型関数の摂動を特徴付ける統計理論の一組を開発する。
自然の「プラグイン」推定器に固有の非無視バイアス問題を緩和するために,非バイアス推定器を開発する。
論文 参考訳(メタデータ) (2021-04-07T17:55:10Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Joint Inference of Multiple Graphs from Matrix Polynomials [34.98220454543502]
ノード上の観測からグラフ構造を推定することは重要かつ一般的なネットワーク科学課題である。
ノードの信号の観測から複数のグラフを共同で推定する問題について検討する。
本稿では,真のグラフの回復を保証するための凸最適化手法を提案する。
論文 参考訳(メタデータ) (2020-10-16T02:45:15Z) - Parsimonious Feature Extraction Methods: Extending Robust Probabilistic
Projections with Generalized Skew-t [0.8336315962271392]
本稿では,学生の確率的主成分法に新たな一般化を提案する。
この新しいフレームワークは、観測データにおける端尾依存性の群をモデル化するための、より柔軟なアプローチを提供する。
新しいフレームワークの適用性は、最も高い市場資本を持つ暗号通貨からなるデータセットに説明されている。
論文 参考訳(メタデータ) (2020-09-24T05:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。