論文の概要: Cloud Cover Nowcasting with Deep Learning
- arxiv url: http://arxiv.org/abs/2009.11577v3
- Date: Thu, 17 Dec 2020 11:57:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 04:06:02.329733
- Title: Cloud Cover Nowcasting with Deep Learning
- Title(参考訳): ディープラーニングによるcloud cover nowcasting
- Authors: L\'ea Berthomier, Bruno Pradel and Lior Perez
- Abstract要約: 我々は,衛星撮影の最適化や太陽光発電のエネルギー生産予測など,様々な応用分野を持つクラウド・カバー・ユースキャスティングに注目した。
我々は,Meteosat衛星画像に深部畳み込みニューラルネットワークを適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowcasting is a field of meteorology which aims at forecasting weather on a
short term of up to a few hours. In the meteorology landscape, this field is
rather specific as it requires particular techniques, such as data
extrapolation, where conventional meteorology is generally based on physical
modeling. In this paper, we focus on cloud cover nowcasting, which has various
application areas such as satellite shots optimisation and photovoltaic energy
production forecast.
Following recent deep learning successes on multiple imagery tasks, we
applied deep convolutionnal neural networks on Meteosat satellite images for
cloud cover nowcasting. We present the results of several architectures
specialized in image segmentation and time series prediction. We selected the
best models according to machine learning metrics as well as meteorological
metrics. All selected architectures showed significant improvements over
persistence and the well-known U-Net surpasses AROME physical model.
- Abstract(参考訳): Nowcastingは気象学の分野であり、気象予報を数時間の短期間で行うことを目的としている。
気象学の世界では、この分野はデータ外挿のような特定の技術を必要とするため、通常の気象学は一般に物理モデリングに基づいているため、かなり特異である。
本稿では,衛星撮影の最適化や太陽光発電の発電予測など,応用分野が多様であるクラウドカバーの nowcasting に着目した。
近年,複数の画像タスクにおけるディープラーニングの成功に続いて,衛星画像に深部畳み込みニューラルネットワークを適用した。
画像セグメンテーションと時系列予測に特化しているいくつかのアーキテクチャの結果を示す。
機械学習の指標と気象の指標に基づいて最適なモデルを選択した。
選択されたアーキテクチャはすべて、永続性よりも大幅に改善され、よく知られたU-NetはAROME物理モデルを上回った。
関連論文リスト
- WeatherGFM: Learning A Weather Generalist Foundation Model via In-context Learning [69.82211470647349]
第1次一般気象基礎モデル(WeatherGFM)を紹介する。
気象理解タスクの幅広い範囲を統一的な方法で解決する。
我々のモデルは、天気予報、超解像、天気画像翻訳、後処理など、最大10の気象理解タスクを効果的に処理できる。
論文 参考訳(メタデータ) (2024-11-08T09:14:19Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Forecasting the Future with Future Technologies: Advancements in Large Meteorological Models [3.332582598089642]
気象予報の分野は、大きなモデルの統合によって大きな変化を遂げた。
FourCastNet、Pangu-Weather、GraphCast、ClimaX、FengWuといったモデルは、正確で高精度な予測を提供することで、顕著な貢献をしている。
論文 参考訳(メタデータ) (2024-04-10T00:52:54Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Exploring the Application of Large-scale Pre-trained Models on Adverse
Weather Removal [97.53040662243768]
ネットワークが異なる気象条件を適応的に処理できるようにするために,CLIP埋め込みモジュールを提案する。
このモジュールは、CLIP画像エンコーダによって抽出されたサンプル特定気象と、パラメータセットによって学習された分布特定情報を統合する。
論文 参考訳(メタデータ) (2023-06-15T10:06:13Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Benchmarking of Deep Learning Irradiance Forecasting Models from Sky
Images -- an in-depth Analysis [0.0]
我々は4つのよく使われるディープラーニングアーキテクチャを訓練し、半球空画像のシーケンスから太陽の照度を予測する。
その結果、時間的側面の符号化は予測を大幅に改善し、10分予測スキルはテスト年度で20.4%に達した。
一般的なセットアップでは、ディープラーニングモデルは"非常にスマートな永続化モデル"のように振る舞う傾向があり、永続モデルと時間的に一致し、最もペナルティの高いエラーを軽減します。
論文 参考訳(メタデータ) (2021-02-01T09:31:14Z) - Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee [2.9477900773805032]
本稿では,複数の気象観測所の過去のデータを利用して,シンプルな機械学習モデルを訓練する天気予報手法を提案する。
モデルの精度は、現在の最先端技術と併用するのに十分である。
論文 参考訳(メタデータ) (2020-08-25T02:41:32Z) - CloudCast: A Satellite-Based Dataset and Baseline for Forecasting Clouds [0.0]
本稿では,CloudCast'と呼ばれる新しい衛星ベースのデータセットを提案する。
画像は70,080枚で、雲の種類は10種類あり、大気の複数の層がピクセルレベルでアノテートされている。
データセットの空間解像度は928 x 1530ピクセル(1ピクセルあたり3x3km)で、2017-01-01から2018-12-31までのフレーム間隔は15分である。
論文 参考訳(メタデータ) (2020-07-15T20:20:55Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。