論文の概要: Boosting Algorithms for Delivery Time Prediction in Transportation
Logistics
- arxiv url: http://arxiv.org/abs/2009.11598v2
- Date: Wed, 5 Jan 2022 08:21:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 04:15:14.137927
- Title: Boosting Algorithms for Delivery Time Prediction in Transportation
Logistics
- Title(参考訳): 輸送物流における配送時間予測のためのブースティングアルゴリズム
- Authors: Jihed Khiari and Cristina Olaverri-Monreal
- Abstract要約: 旅行時間の予測は郵便サービスの遅延を軽減できることを示す。
光勾配ブースティングやカソーストなどのブースティングアルゴリズムは、精度と実行効率の点で高い性能を持つ。
- 参考スコア(独自算出の注目度): 2.147325264113341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Travel time is a crucial measure in transportation. Accurate travel time
prediction is also fundamental for operation and advanced information systems.
A variety of solutions exist for short-term travel time predictions such as
solutions that utilize real-time GPS data and optimization methods to track the
path of a vehicle. However, reliable long-term predictions remain challenging.
We show in this paper the applicability and usefulness of travel time i.e.
delivery time prediction for postal services. We investigate several methods
such as linear regression models and tree based ensembles such as random
forest, bagging, and boosting, that allow to predict delivery time by
conducting extensive experiments and considering many usability scenarios.
Results reveal that travel time prediction can help mitigate high delays in
postal services. We show that some boosting algorithms, such as light gradient
boosting and catboost, have a higher performance in terms of accuracy and
runtime efficiency than other baselines such as linear regression models,
bagging regressor and random forest.
- Abstract(参考訳): 旅行時間は交通にとって重要な手段である。
正確な旅行時間予測は、運用および高度情報システムにも不可欠である。
リアルタイムgpsデータを利用するソリューションや車両の経路を追跡するための最適化方法など、短期的な走行時間予測にはさまざまなソリューションが存在する。
しかし、信頼できる長期予測は依然として困難である。
本稿では,郵便サービスの配送時間予測における旅行時間の適用性と有用性を示す。
本研究では,ランダムフォレスト,袋詰め,ブースティングなど,線形回帰モデルや木ベースのアンサンブルなど,広範囲な実験を行い,多くのユーザビリティシナリオを考慮し,納期を予測する手法について検討した。
その結果,旅行時間の予測は郵便サービスの遅延を軽減できることがわかった。
本研究では,光勾配向上やカボオストなどのブースティングアルゴリズムは,線形回帰モデルやバッジ回帰器,ランダムフォレストなど,他のベースラインよりも精度が高く,実行効率も高いことを示す。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention [76.37139809114274]
HPNetは、新しい動的軌道予測手法である。
逐次予測間の動的関係を自動的に符号化する履歴予測アテンションモジュールを提案する。
私たちのコードはhttps://github.com/XiaolongTang23/HPNetで利用可能です。
論文 参考訳(メタデータ) (2024-04-09T14:42:31Z) - Meta-Learning over Time for Destination Prediction Tasks [53.12827614887103]
交通分野における公共目的と民間目標の両方を、車両の行動を理解し、予測する必要がある。
近年の研究では、時間情報の導入による予測性能の限界改善しか見出されていない。
本稿では、ニューラルネットワークが入力に応じて自身の重みを変えることを学習するハイパーネットワークに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-29T17:58:12Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
イタリアの32カ所の標高10mの風速計から観測された大量の風のデータセットを分析した。
我々は、過去の風の履歴を用いて教師あり学習アルゴリズムを訓練し、その価値を将来予測する。
最適設計と性能は場所によって異なることがわかった。
論文 参考訳(メタデータ) (2022-04-01T14:55:10Z) - A Deep-Learning Based Optimization Approach to Address Stop-Skipping
Strategy in Urban Rail Transit Lines [0.0]
都市鉄道路線における最適なストップスキップパターンを決定するための高度なデータ駆動最適化手法を提案する。
我々は、ピーク時のステーションレベルの需要率を予測するために、LSTM(Long Short-Term Memory)ディープラーニングモデルを用いている。
この問題の指数関数的性質を考慮し,適切な時間で解決するAnt Colony Optimization手法を提案する。
論文 参考訳(メタデータ) (2021-09-17T23:52:19Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
本稿では,ATA(Estimated Time of Arrival)のための道路ネットワークメトリックラーニングフレームワークを提案する。
本研究は,(1)走行時間を予測する主回帰タスク,(2)リンク埋め込みベクトルの品質向上のための補助的計量学習タスクの2つの構成要素から構成される。
提案手法は最先端モデルよりも優れており,その促進は少ないデータでコールドリンクに集中していることを示す。
論文 参考訳(メタデータ) (2020-06-24T04:45:14Z) - STAD: Spatio-Temporal Adjustment of Traffic-Oblivious Travel-Time
Estimation [1.1731001328350983]
本稿では,出先,目的地,出発時刻の形式で表現された旅行要求に対して,旅行時間推定を調節するシステムSTADを提案する。
STADは、機械学習とスパーストリップデータを使用して、基本的なルーティングエンジンの欠陥を学習する。
Doha、New York City、Portoの実際の旅行データセットの実験では、最初の2都市では14%、後者では29%の絶対誤差が減少している。
論文 参考訳(メタデータ) (2020-06-08T09:47:55Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
我々は、自動運転車の文脈において、共同認識と運動予測の問題に取り組む。
我々は,入力センサデータとしてエンド・ツー・エンドのモデルであるNetを提案し,各ステップのオブジェクト追跡とその将来レベルを出力する。
論文 参考訳(メタデータ) (2020-05-29T17:57:25Z) - Travel Time Prediction using Tree-Based Ensembles [4.74324101583772]
本稿では,都市シナリオにおける2つの任意の地点間の移動時間予測の課題について考察する。
我々はこの問題を2つの時間的視点から見る: 長期予測は数日間、短期予測は1時間である。
論文 参考訳(メタデータ) (2020-05-28T07:43:54Z) - CARPe Posterum: A Convolutional Approach for Real-time Pedestrian Path
Prediction [3.883460584034766]
本稿では,リアルタイム歩行者経路予測のための畳み込み手法CARPeを提案する。
グラフ同型ネットワークのバリエーションとアジャイルの畳み込みニューラルネットワーク設計を組み合わせて、高速で正確なパス予測アプローチを形成する。
予測速度と予測精度の両面での結果が得られ、現在の最先端手法と比較してFPSを大幅に改善した。
論文 参考訳(メタデータ) (2020-05-26T01:10:01Z) - BusTime: Which is the Right Prediction Model for My Bus Arrival Time? [3.1761486589684975]
本稿では, このギャップを補うために, 広く用いられている予測モデルを解析するための汎用的, 実用的な評価枠組みを提案する。
特に、このフレームワークには、入力データポイントをはるかに少なくする生のバスGPSデータ前処理方法が含まれている。
また,都市マネジャーに対して,一般的な予測モデルのトレーニングおよび予測段階における実践的強みと弱みを分析し,予備的な結果を提示する。
論文 参考訳(メタデータ) (2020-03-20T17:03:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。