論文の概要: Travel Time Prediction using Tree-Based Ensembles
- arxiv url: http://arxiv.org/abs/2005.13818v1
- Date: Thu, 28 May 2020 07:43:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-27 04:34:22.020485
- Title: Travel Time Prediction using Tree-Based Ensembles
- Title(参考訳): 木系アンサンブルを用いた旅行時間予測
- Authors: He Huang, Martin Pouls, Anne Meyer, and Markus Pauly
- Abstract要約: 本稿では,都市シナリオにおける2つの任意の地点間の移動時間予測の課題について考察する。
我々はこの問題を2つの時間的視点から見る: 長期予測は数日間、短期予測は1時間である。
- 参考スコア(独自算出の注目度): 4.74324101583772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider the task of predicting travel times between two
arbitrary points in an urban scenario. We view this problem from two temporal
perspectives: long-term forecasting with a horizon of several days and
short-term forecasting with a horizon of one hour. Both of these perspectives
are relevant for planning tasks in the context of urban mobility and
transportation services. We utilize tree-based ensemble methods that we train
and evaluate on a dataset of taxi trip records from New York City. Through
extensive data analysis, we identify relevant temporal and spatial features. We
also engineer additional features based on weather and routing data. The latter
is obtained via a routing solver operating on the road network. The
computational results show that the addition of this routing data can be
beneficial to the model performance. Moreover, employing different models for
short and long-term prediction is useful as short-term models are better suited
to mirror current traffic conditions. In fact, we show that accurate short-term
predictions may be obtained with only little training data.
- Abstract(参考訳): 本稿では,都市シナリオにおける2つの任意の地点間の移動時間予測の課題について考察する。
我々はこの問題を2つの時間的視点から見る: 長期予測は数日間、短期予測は1時間である。
これら2つの視点は、都市移動と交通サービスの観点からの計画作業に関係している。
我々は,ニューヨーク市のタクシー旅行記録のデータセットをトレーニングし,評価する木に基づくアンサンブル手法を利用する。
広範囲なデータ分析により,時間的特徴と空間的特徴を同定する。
天気やルーティングデータに基づいた追加機能も開発しています。
後者は、道路網で動作するルーティング解決器を介して得られる。
計算結果から, このルーティングデータの追加はモデルの性能に有益であることが示唆された。
さらに,交通状況の反映として短期モデルの方が適しているため,短期予測と長期予測に異なるモデルを用いる方が有用である。
実際、トレーニングデータが少ないだけで、正確な短期予測が得られ得ることを示す。
関連論文リスト
- HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention [76.37139809114274]
HPNetは、新しい動的軌道予測手法である。
逐次予測間の動的関係を自動的に符号化する履歴予測アテンションモジュールを提案する。
私たちのコードはhttps://github.com/XiaolongTang23/HPNetで利用可能です。
論文 参考訳(メタデータ) (2024-04-09T14:42:31Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Similarity-based Feature Extraction for Large-scale Sparse Traffic
Forecasting [4.295541562380963]
NeurIPS 2022 Traffic4cast チャレンジは、公共に利用可能なスパースループ数データで都市全体の交通状態を予測することを目的としている。
この技術報告は、ETA予測の拡張課題に対して、私たちの2位獲得ソリューションを紹介します。
論文 参考訳(メタデータ) (2022-11-13T22:19:21Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
本稿では,将来の占有予測を生成するための時間的予測ネットワークパイプラインを提案する。
現在のSOTAと比較して、我々の手法は3秒の長い水平線での占有を予測している。
我々は、さらなる研究を支援するために、nulisに基づくグリッド占有データセットを公開します。
論文 参考訳(メタデータ) (2022-05-06T13:45:32Z) - LTN: Long-Term Network for Long-Term Motion Prediction [0.0]
長期ネットワーク(LTN)と呼ばれる長期軌道予測のための2段階フレームワークを提案する。
まず,条件付き変分オートエンコーダ(CVAE)を用いて提案したトラジェクトリの集合を生成し,それらをバイナリラベルで分類し,最も高いスコアでトラジェクトリを出力する。
その結果,提案手法は,長期軌道予測における複数の最先端手法よりも精度が高いことがわかった。
論文 参考訳(メタデータ) (2020-10-15T17:59:09Z) - Boosting Algorithms for Delivery Time Prediction in Transportation
Logistics [2.147325264113341]
旅行時間の予測は郵便サービスの遅延を軽減できることを示す。
光勾配ブースティングやカソーストなどのブースティングアルゴリズムは、精度と実行効率の点で高い性能を持つ。
論文 参考訳(メタデータ) (2020-09-24T11:01:22Z) - Graph modelling approaches for motorway traffic flow prediction [6.370406399003785]
本稿では,シドニーの人気のある自動車道に沿って,正確な短期予測を構築するための2つの新しい時空間的アプローチを提案する。
提案手法は, 道路沿いの各目標カウントステーションに対して, 直近で最も近い交通流情報を用いて, バックトラックと近接性を示す近接手法に基づいて構築される。
その結果,10分以内の短期予測では,提案手法は最先端のディープラーニングモデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-06-26T06:54:14Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
本稿では,ATA(Estimated Time of Arrival)のための道路ネットワークメトリックラーニングフレームワークを提案する。
本研究は,(1)走行時間を予測する主回帰タスク,(2)リンク埋め込みベクトルの品質向上のための補助的計量学習タスクの2つの構成要素から構成される。
提案手法は最先端モデルよりも優れており,その促進は少ないデータでコールドリンクに集中していることを示す。
論文 参考訳(メタデータ) (2020-06-24T04:45:14Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
我々は、自動運転車の文脈において、共同認識と運動予測の問題に取り組む。
我々は,入力センサデータとしてエンド・ツー・エンドのモデルであるNetを提案し,各ステップのオブジェクト追跡とその将来レベルを出力する。
論文 参考訳(メタデータ) (2020-05-29T17:57:25Z) - BusTime: Which is the Right Prediction Model for My Bus Arrival Time? [3.1761486589684975]
本稿では, このギャップを補うために, 広く用いられている予測モデルを解析するための汎用的, 実用的な評価枠組みを提案する。
特に、このフレームワークには、入力データポイントをはるかに少なくする生のバスGPSデータ前処理方法が含まれている。
また,都市マネジャーに対して,一般的な予測モデルのトレーニングおよび予測段階における実践的強みと弱みを分析し,予備的な結果を提示する。
論文 参考訳(メタデータ) (2020-03-20T17:03:36Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。