論文の概要: Privacy-preserving Transfer Learning via Secure Maximum Mean Discrepancy
- arxiv url: http://arxiv.org/abs/2009.11680v2
- Date: Sat, 3 Oct 2020 03:22:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 04:14:37.129383
- Title: Privacy-preserving Transfer Learning via Secure Maximum Mean Discrepancy
- Title(参考訳): secure maximum average discrepancy によるプライバシー保護転送学習
- Authors: Bin Zhang, Cen Chen, Li Wang
- Abstract要約: 本稿では,同型暗号に基づくSMMD(Maximum Mean Discrepancy)のセキュアバージョンを提案する。
提案したSMMDは、ソースとターゲットデータ分布を整列させる際に、転送学習における潜在的な情報漏洩を回避することができる。
- 参考スコア(独自算出の注目度): 15.145214895007134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of machine learning algorithms often relies on a large amount of
high-quality data to train well-performed models. However, data is a valuable
resource and are always held by different parties in reality. An effective
solution to such a data isolation problem is to employ federated learning,
which allows multiple parties to collaboratively train a model. In this paper,
we propose a Secure version of the widely used Maximum Mean Discrepancy (SMMD)
based on homomorphic encryption to enable effective knowledge transfer under
the data federation setting without compromising the data privacy. The proposed
SMMD is able to avoid the potential information leakage in transfer learning
when aligning the source and target data distribution. As a result, both the
source domain and target domain can fully utilize their data to build more
scalable models. Experimental results demonstrate that our proposed SMMD is
secure and effective.
- Abstract(参考訳): 機械学習アルゴリズムの成功は、高性能なモデルをトレーニングするために、大量の高品質データに依存することが多い。
しかし、データは貴重なリソースであり、現実には、常に異なる当事者によって保持される。
このようなデータ分離問題の効果的な解決策は、複数のパーティが協力してモデルをトレーニングできるフェデレートされた学習を採用することである。
本稿では,データプライバシを損なうことなく,データフェデレーション設定下で効果的な知識伝達を実現するために,同型暗号化に基づく広く使用されている最大平均離散性(SMMD)のセキュアバージョンを提案する。
提案したSMMDは、ソースとターゲットデータ分布を整列する際の転送学習における潜在的な情報漏洩を回避することができる。
その結果、ソースドメインとターゲットドメインの両方が、データを完全に活用して、よりスケーラブルなモデルを構築することができます。
実験の結果,提案するSMMDは安全かつ有効であることが示唆された。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
条件付き変分オートエンコーダ(CVAE)は、大きな事前学習された視覚基盤モデルから抽出された特徴ベクトルに基づいて訓練される。
本手法は, 医用領域と自然画像領域の両方において, 従来のアプローチよりも優れている。
結果は、データスカースおよびプライバシに敏感な環境におけるディープラーニングアプリケーションに大きな影響を与える生成モデルの可能性を強調している。
論文 参考訳(メタデータ) (2024-08-01T15:26:24Z) - Enhancing Information Maximization with Distance-Aware Contrastive
Learning for Source-Free Cross-Domain Few-Shot Learning [55.715623885418815]
クロスドメインのFew-Shot Learningメソッドは、トレーニング前のフェーズでモデルをトレーニングするために、ソースドメインデータにアクセスする必要がある。
データプライバシやデータ送信やトレーニングコストの削減に対する懸念が高まっているため,ソースデータにアクセスせずにCDFSLソリューションを開発する必要がある。
本稿では,これらの課題に対処するための距離対応コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-03-04T12:10:24Z) - Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning [32.52811740662061]
本稿では,大規模言語モデル(LLM)に適した新しいフェデレーション学習アルゴリズムDP-LoRAを紹介する。
DP-LoRAは、重み付け更新のノイズを追加し、データプライバシを個別に維持しつつ、協調的なモデルトレーニングを容易にするガウス機構を使用することで、データのプライバシを保存する。
論文 参考訳(メタデータ) (2023-12-29T06:50:38Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - FRAMU: Attention-based Machine Unlearning using Federated Reinforcement
Learning [16.86560475992975]
FRAMU(Federated Reinforcement Learning)を用いた注意型機械学習について紹介する。
FRAMUには適応学習機構、プライバシー保護技術、最適化戦略が組み込まれている。
実験の結果,FRAMUはベースラインモデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2023-09-19T03:13:17Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Secure Neuroimaging Analysis using Federated Learning with Homomorphic
Encryption [14.269757725951882]
フェデレートラーニング(FL)は、異なるリモートデータソース上の機械学習モデルの分散計算を可能にする。
最近のメンバーシップ攻撃は、モデルパラメータや要約統計が中央サイトと共有されているときに、個人的または機密性の高い個人情報が漏洩したり、推測されることがあることを示している。
完全同相暗号(FHE)を用いたセキュアFLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-07T12:15:52Z) - Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
Sharing Private Information [55.866673486753115]
プライバシーとセキュリティを守るために拡張可能で弾力性のある学習フレームワークを提案します。
提案するフレームワークは分散Asynchronized Discriminator Generative Adrial Networks (AsynDGAN) である。
論文 参考訳(メタデータ) (2020-12-15T20:41:24Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
フェデレートラーニング(FL)は、データを有用なモデルにトレーニングしながら、モバイル端末(MT)からプライベートデータを保存することができる。
情報理論の観点からは、MTがアップロードした共有モデルから、好奇心の強いサーバがプライベートな情報を推測することが可能である。
サーバにアップロードする前に、共有モデルに人工ノイズを加えることで、ユーザレベルの差分プライバシー(UDP)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-29T10:13:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。