Revealing the Myth of Higher-Order Inference in Coreference Resolution
- URL: http://arxiv.org/abs/2009.12013v2
- Date: Mon, 28 Sep 2020 22:47:33 GMT
- Title: Revealing the Myth of Higher-Order Inference in Coreference Resolution
- Authors: Liyan Xu, Jinho D. Choi
- Abstract summary: This paper analyzes the impact of higher-order inference (HOI) on the task of coreference resolution.
We implement an end-to-end coreference system as well as four HOI approaches, attended antecedent, entity, span clustering, and cluster merging.
We find that given a high-performing encoder such as SpanBERT, the impact of HOI is negative to marginal.
- Score: 20.548299226366193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper analyzes the impact of higher-order inference (HOI) on the task of
coreference resolution. HOI has been adapted by almost all recent coreference
resolution models without taking much investigation on its true effectiveness
over representation learning. To make a comprehensive analysis, we implement an
end-to-end coreference system as well as four HOI approaches, attended
antecedent, entity equalization, span clustering, and cluster merging, where
the latter two are our original methods. We find that given a high-performing
encoder such as SpanBERT, the impact of HOI is negative to marginal, providing
a new perspective of HOI to this task. Our best model using cluster merging
shows the Avg-F1 of 80.2 on the CoNLL 2012 shared task dataset in English.
Related papers
- Hybrid Rule-Neural Coreference Resolution System based on Actor-Critic
Learning [53.73316523766183]
Coreference resolution systems need to tackle two main tasks.
One task is to detect all of the potential mentions, the other is to learn the linking of an antecedent for each possible mention.
We propose a hybrid rule-neural coreference resolution system based on actor-critic learning.
arXiv Detail & Related papers (2022-12-20T08:55:47Z) - Neural Coreference Resolution based on Reinforcement Learning [53.73316523766183]
Coreference resolution systems need to solve two subtasks.
One task is to detect all of the potential mentions, the other is to learn the linking of an antecedent for each possible mention.
We propose a reinforcement learning actor-critic-based neural coreference resolution system.
arXiv Detail & Related papers (2022-12-18T07:36:35Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
Active learning frameworks aim to reduce the cost of data annotation by actively requesting the labeling for the most informative data points.
Some proposed approaches include uncertainty-based techniques, geometric methods, implicit combination of uncertainty-based and geometric approaches.
We present an innovative integration of recent progress in both uncertainty-based and geometric frameworks to enable an efficient exploration/exploitation trade-off in sample selection strategy.
Our framework provides two advantages: (1) accurate posterior estimation, and (2) tune-able trade-off between computational overhead and higher accuracy.
arXiv Detail & Related papers (2022-10-11T20:20:20Z) - GCoNet+: A Stronger Group Collaborative Co-Salient Object Detector [156.43671738038657]
We present a novel end-to-end group collaborative learning network, termed GCoNet+.
GCoNet+ can effectively and efficiently identify co-salient objects in natural scenes.
arXiv Detail & Related papers (2022-05-30T23:49:19Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Local and Global Context-Based Pairwise Models for Sentence Ordering [0.0]
In this paper, we put forward a set of robust local and global context-based pairwise ordering strategies.
Our proposed encoding method utilizes the paragraph's rich global contextual information to predict the pairwise order.
Analysis of the two proposed decoding strategies helps better explain error propagation in pairwise models.
arXiv Detail & Related papers (2021-10-08T17:57:59Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
We build a new framework, named Neighborhood Contrastive Learning, to learn discriminative representations that are important to clustering performance.
We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-06-20T17:34:55Z) - Novel Human-Object Interaction Detection via Adversarial Domain
Generalization [103.55143362926388]
We study the problem of novel human-object interaction (HOI) detection, aiming at improving the generalization ability of the model to unseen scenarios.
The challenge mainly stems from the large compositional space of objects and predicates, which leads to the lack of sufficient training data for all the object-predicate combinations.
We propose a unified framework of adversarial domain generalization to learn object-invariant features for predicate prediction.
arXiv Detail & Related papers (2020-05-22T22:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.