End-to-End Prediction of Parcel Delivery Time with Deep Learning for
Smart-City Applications
- URL: http://arxiv.org/abs/2009.12197v2
- Date: Thu, 29 Apr 2021 03:51:04 GMT
- Title: End-to-End Prediction of Parcel Delivery Time with Deep Learning for
Smart-City Applications
- Authors: Arthur Cruz de Araujo and Ali Etemad
- Abstract summary: We study the use of deep learning for solving a real-world case of last-mile parcel delivery time prediction.
We focus on a large-scale parcel dataset provided by Canada Post, covering the Greater Toronto Area.
We utilize an origin-destination (OD) formulation, in which routes are not available, but only the start and end delivery points.
- Score: 19.442685015494316
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The acquisition of massive data on parcel delivery motivates postal operators
to foster the development of predictive systems to improve customer service.
Predicting delivery times successive to being shipped out of the final depot,
referred to as last-mile prediction, deals with complicating factors such as
traffic, drivers' behaviors, and weather. This work studies the use of deep
learning for solving a real-world case of last-mile parcel delivery time
prediction. We present our solution under the IoT paradigm and discuss its
feasibility on a cloud-based architecture as a smart city application. We focus
on a large-scale parcel dataset provided by Canada Post, covering the Greater
Toronto Area (GTA). We utilize an origin-destination (OD) formulation, in which
routes are not available, but only the start and end delivery points. We
investigate three categories of convolutional-based neural networks and assess
their performances on the task. We further demonstrate how our modeling
outperforms several baselines, from classical machine learning models to
referenced OD solutions. Specifically, we show that a ResNet architecture with
8 residual blocks displays the best trade-off between performance and
complexity. We perform a thorough error analysis across the data and visualize
the deep features learned to better understand the model behavior, making
interesting remarks on data predictability. Our work provides an end-to-end
neural pipeline that leverages parcel OD data as well as weather to accurately
predict delivery durations. We believe that our system has the potential not
only to improve user experience by better modeling their anticipation but also
to aid last-mile postal logistics as a whole.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
Our solution ranks first in the Argoverse 2 End-to-end Forecasting Challenge, with 63.82 mAPf.
We depart from the current trend of tackling this task via end-to-end training from perception to forecasting, and instead use a modular approach.
We surpass forecasting results by +17.1 points over last year's winner and by +13.3 points over this year's runner-up.
arXiv Detail & Related papers (2024-06-12T11:50:51Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - HUTFormer: Hierarchical U-Net Transformer for Long-Term Traffic
Forecasting [13.49661832917228]
We make the first attempt to explore long-term traffic forecasting, e.g., 1-day forecasting.
We propose a novel Hierarchical U-net TransFormer to address the issues of long-term traffic forecasting.
The proposed HUTFormer significantly outperforms state-of-the-art traffic forecasting and long time series forecasting baselines.
arXiv Detail & Related papers (2023-07-27T02:43:21Z) - Similarity-based Feature Extraction for Large-scale Sparse Traffic
Forecasting [4.295541562380963]
The NeurIPS 2022 Traffic4cast challenge is dedicated to predicting the citywide traffic states with publicly available sparse loop count data.
This technical report introduces our second-place winning solution to the extended challenge of ETA prediction.
arXiv Detail & Related papers (2022-11-13T22:19:21Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - DeepSTCL: A Deep Spatio-temporal ConvLSTM for Travel Demand Prediction [4.0711669706762805]
A novel deep learning traffic demand forecasting framework based on Deep Spatio-Temporal ConvLSTM is proposed in this paper.
The proposed method can capture temporal dependence and spatial dependence simultaneously.
The experimental results on DIDI order dataset of Chengdu demonstrate that our method outperforms traditional models with accuracy and speed.
arXiv Detail & Related papers (2020-08-22T13:33:31Z) - Traffic Flow Forecast of Road Networks with Recurrent Neural Networks [0.0]
The forecast of traffic flow is indispensable for an efficient intelligent transportation system.
In our work, this prediction is performed with various recurrent neural networks.
Most often the vector output model with gated recurrent units achieved the smallest error on the test set.
arXiv Detail & Related papers (2020-06-08T15:17:58Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z) - BusTime: Which is the Right Prediction Model for My Bus Arrival Time? [3.1761486589684975]
This paper tries to fill this gap by proposing a general and practical evaluation framework for analysing various widely used prediction models.
In particular, this framework contains a raw bus GPS data pre-processing method that needs much less number of input data points.
We also present preliminary results for city managers by analysing the practical strengths and weaknesses in both training and predicting stages of commonly used prediction models.
arXiv Detail & Related papers (2020-03-20T17:03:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.