Dynamical Entanglement
- URL: http://arxiv.org/abs/2009.12304v2
- Date: Fri, 30 Oct 2020 17:53:23 GMT
- Title: Dynamical Entanglement
- Authors: Gilad Gour, Carlo Maria Scandolo
- Abstract summary: We work with the partial transpose of a superchannel, and use it to define computable measures of dynamical entanglement.
We show that a version of it, the max-logarithmic negativity, represents the exact entanglement cost.
- Score: 7.734726150561088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unlike the entanglement of quantum states, very little is known about the
entanglement of bipartite channels, called dynamical entanglement. Here we work
with the partial transpose of a superchannel, and use it to define computable
measures of dynamical entanglement, such as the negativity. We show that a
version of it, the max-logarithmic negativity, represents the exact asymptotic
dynamical entanglement cost. We discover a family of dynamical entanglement
measures that provide necessary and sufficient conditions for bipartite channel
simulation under local operations and classical communication and under
operations with positive partial transpose.
Related papers
- Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Simulating unsteady fluid flows on a superconducting quantum processor [23.24560103938476]
We report an experiment on the digital simulation of unsteady flows, which consists of quantum encoding, evolution, and detection of flow states.
This work demonstrates the potential of quantum computing in simulating more complex flows, such as turbulence, for practical applications.
arXiv Detail & Related papers (2024-04-24T13:45:43Z) - Dissipative Dynamics of Graph-State Stabilizers with Superconducting
Qubits [0.0]
We study the noisy evolution of multipartite entangled states, focusing on superconducting-qubit devices accessible via the cloud.
We introduce an approach modeling the charge-parity splitting using an extended Markovian environment.
We show that the underlying many-body dynamics generate decays and revivals of stabilizers, which are used extensively in the context of quantum error correction.
arXiv Detail & Related papers (2023-08-03T16:30:35Z) - Dual symplectic classical circuits: An exactly solvable model of
many-body chaos [0.0]
We prove that two-point dynamical correlation functions are non-vanishing only along the edges of the light cones.
We test our theory in a specific family of dual-symplectic circuits, describing the dynamics of a classical Floquet spin chain.
arXiv Detail & Related papers (2023-07-04T15:48:41Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Exact dynamics in dual-unitary quantum circuits with projective
measurements [0.0]
We introduce a class of models combining dual-unitary circuits with particular projective measurements.
We identify a symmetry preventing a measurement-induced phase transition and present exact results.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z) - Dynamical crossover in the transient quench dynamics of short-range
transverse field Ising models [4.16271611433618]
We study the transient regimes of non-equilibrium processes probed by single-site observables that is magnetization per site.
The decay rates of time-dependent and single-site observables exhibit a dynamical crossover that separates two dynamical regions.
Our results reveal that scaling law exponent in short times at the close vicinity of the dynamical crossover is significantly different than the one predicted by analytical theory.
arXiv Detail & Related papers (2020-04-26T04:39:51Z) - Quantifying dynamical coherence with dynamical entanglement [1.6114012813668934]
We show that the coherence of an operation upper bounds the dynamical entanglement that can be generated from it with the help of additional incoherent operations.
An analog to the entanglement potential exists on the level of operations and serves as a valid quantifier for dynamical coherence.
arXiv Detail & Related papers (2020-04-09T13:45:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.