Performance benefits of increased qubit connectivity in quantum
annealing 3-dimensional spin glasses
- URL: http://arxiv.org/abs/2009.12479v1
- Date: Sat, 26 Sep 2020 00:06:36 GMT
- Title: Performance benefits of increased qubit connectivity in quantum
annealing 3-dimensional spin glasses
- Authors: Andrew D. King and William Bernoudy
- Abstract summary: An important challenge in superconducting quantum computing is the need to physically couple many devices.
Recent advances in the design and fabrication of quantum annealing processors have enabled an increase in pairwise connectivity.
- Score: 0.9137554315375919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An important challenge in superconducting quantum computing is the need to
physically couple many devices using quasi-two-dimensional fabrication
processes. Recent advances in the design and fabrication of quantum annealing
processors have enabled an increase in pairwise connectivity among thousands of
qubits. One benefit of this is the ability to minor-embed optimization problems
using fewer physical qubits for each logical spin. Here we demonstrate the
benefit of this progress in the problem of minimizing the energy of
three-dimensional spin glasses. Comparing the previous generation D-Wave 2000Q
system to the new Advantage system, we observe improved scaling of solution
time and improved consistency over multiple graph embeddings.
Related papers
- Performance Characterization of a Multi-Module Quantum Processor with Static Inter-Chip Couplers [63.42120407991982]
Three-dimensional integration technologies such as flip-chip bonding are a key prerequisite to realize large-scale superconducting quantum processors.
We present a design for a multi-chip module comprising one carrier chip and four qubit modules.
Measuring two of the qubits, we analyze the readout performance, finding a mean three-level state-assignment error of $9 times 10-3$ in 200 ns.
We demonstrate a controlled-Z two-qubit gate in 100 ns with an error of $7 times 10-3$ extracted from interleaved randomized benchmarking.
arXiv Detail & Related papers (2025-03-16T18:32:44Z) - Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum
Circuits [12.29963230632145]
We study the use of dynamical decoupling in characterizing undesired two-qubit couplings and the underlying single-qubit decoherence.
We develop a syncopated decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions.
arXiv Detail & Related papers (2024-03-12T17:18:35Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Rapid single-shot parity spin readout in a silicon double quantum dot
with fidelity exceeding 99 % [0.0]
Silicon-based spin qubits offer a potential pathway toward realizing a scalable quantum computer.
Recent experiments have demonstrated crucial technologies, including high-fidelity quantum gates and multiqubit operation.
The realization of a fault-tolerant quantum computer requires a high-fidelity spin measurement faster than decoherence.
arXiv Detail & Related papers (2023-09-01T02:59:04Z) - Surpassing millisecond coherence times in on-chip superconducting
quantum memories by optimizing materials, processes, and circuit design [7.388575096626942]
We predict and experimentally verify the relaxation times of aluminum- and tantalum-based transmon qubits.
We realize on-chip quantum memories with single-photon Ramsey times of 2.0$-$2.7 ms, limited by their energy relaxation times of 1.0$-$1.4 ms.
arXiv Detail & Related papers (2023-08-29T18:01:08Z) - Advancements in Superconducting Microwave Cavities and Qubits for
Quantum Information Systems [0.6606016007748989]
Superconducting microwave cavities with ultra-high Q-factors offer long coherence times exceeding 1 ms.
We provide an in-depth analysis of advances in ultra-high Q-factor cavities, integration of Josephson junction-based qubits, and bosonic-encoded qubits in 3D cavities.
We critically survey the latest progress made in implementing single 3D qubits using superconducting materials, normal metals, and multi-qubit and multi-state quantum systems.
arXiv Detail & Related papers (2023-04-18T23:50:29Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Long-range connectivity in a superconducting quantum processor using a
ring resonator [0.0]
We introduce a novel superconducting architecture that uses a ring resonator as a multi-path coupling element with the qubits uniformly distributed throughout its circumference.
We theoretically analyse the qubit connectivity and experimentally verify it in a device capable of supporting up to twelve qubits where each qubit can be connected to nine other qubits.
arXiv Detail & Related papers (2020-12-17T09:34:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.