Long-range connectivity in a superconducting quantum processor using a
ring resonator
- URL: http://arxiv.org/abs/2012.09463v1
- Date: Thu, 17 Dec 2020 09:34:14 GMT
- Title: Long-range connectivity in a superconducting quantum processor using a
ring resonator
- Authors: Sumeru Hazra, Anirban Bhattacharjee, Madhavi Chand, Kishor V.
Salunkhe, Sriram Gopalakrishnan, Meghan P. Patankar and R. Vijay
- Abstract summary: We introduce a novel superconducting architecture that uses a ring resonator as a multi-path coupling element with the qubits uniformly distributed throughout its circumference.
We theoretically analyse the qubit connectivity and experimentally verify it in a device capable of supporting up to twelve qubits where each qubit can be connected to nine other qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Qubit coherence and gate fidelity are typically considered the two most
important metrics for characterizing a quantum processor. An equally important
metric is inter-qubit connectivity as it minimizes gate count and allows
implementing algorithms efficiently with reduced error. However, inter-qubit
connectivity in superconducting processors tends to be limited to nearest
neighbour due to practical constraints in the physical realization. Here, we
introduce a novel superconducting architecture that uses a ring resonator as a
multi-path coupling element with the qubits uniformly distributed throughout
its circumference. Our planar design provides significant enhancement in
connectivity over state of the art superconducting processors without any
additional fabrication complexity. We theoretically analyse the qubit
connectivity and experimentally verify it in a device capable of supporting up
to twelve qubits where each qubit can be connected to nine other qubits. Our
concept is scalable, adaptable to other platforms and has the potential to
significantly accelerate progress in quantum computing, annealing, simulations
and error correction.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Realization of two-qubit gates and multi-body entanglement states in an asymmetric superconducting circuits [3.9488862168263412]
We propose a tunable fluxonium-transmon-transmon (FTT) cou pling scheme.
The asymmetric structure composed of fluxonium and transmon will optimize the frequency space and form a high fidelity two-qubit quantum gate.
We study the performance of this scheme by simulating the general single-qubit Xpi/2 gate and two-qubit (iSWAP) gate.
arXiv Detail & Related papers (2024-04-12T08:44:21Z) - Parametric multi-element coupling architecture for coherent and
dissipative control of superconducting qubits [0.0]
We present a superconducting qubit architecture based on tunable parametric interactions to perform two-qubit gates, reset, leakage recovery and to read out the qubits.
We experimentally demonstrate a controlled-Z gate with a fidelity of $98.30pm 0.23 %$, a reset operation that unconditionally prepares the qubit ground state with a fidelity of $99.80pm 0.02 %$ and a leakage recovery operation with a $98.5pm 0.3 %$ success probability.
arXiv Detail & Related papers (2024-03-04T16:49:36Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
Distributed quantum computing combines the computational power of multiple devices to overcome the limitations of individual devices.
circuit cutting techniques enable the distribution of quantum computations through classical communication.
Quantum teleportation allows the distribution of quantum computations without an exponential increase in shots.
We propose a novel circuit cutting technique that leverages non-maximally entangled qubit pairs.
arXiv Detail & Related papers (2023-06-21T08:03:34Z) - Dynamically Reconfigurable Photon Exchange in a Superconducting Quantum
Processor [1.0614955682118588]
Large-scale quantum computation faces the challenge of efficiently generating entanglement between many qubits.
Here we propose and demonstrate a novel, on-chip photon exchange network.
We show long-range qubit-qubit interactions between qubits with a maximum spatial separation of $9.2textcm$ along a meandered bus resonator.
arXiv Detail & Related papers (2023-03-06T21:28:48Z) - Generation of perfectly entangled two and three qubits states by
classical random interaction [0.0]
This study examines the possibility of finding perfect entanglers for a Hamiltonian.
In this study, we use a superconducting circuit that stands out from other quantum-computing devices.
Our scheme could contribute to quantum teleportation, quantum communication, and some other areas of quantum information processing.
arXiv Detail & Related papers (2022-12-06T16:27:58Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Suppression of crosstalk in superconducting qubits using dynamical
decoupling [0.0]
Super superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors.
ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors.
We propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments on several IBM quantum cloud processors.
arXiv Detail & Related papers (2021-08-10T09:16:05Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.