Potential Features of ICU Admission in X-ray Images of COVID-19 Patients
- URL: http://arxiv.org/abs/2009.12597v2
- Date: Thu, 21 Jan 2021 12:43:04 GMT
- Title: Potential Features of ICU Admission in X-ray Images of COVID-19 Patients
- Authors: Douglas P. S. Gomes, Anwaar Ulhaq, Manoranjan Paul, Michael J. Horry,
Subrata Chakraborty, Manas Saha, Tanmoy Debnath, D.M. Motiur Rahaman
- Abstract summary: This paper presents an original methodology for extracting semantic features that correlate to severity from a data set with patient ICU admission labels.
The methodology employs a neural network trained to recognise lung pathologies to extract the semantic features.
The method has shown to be capable of selecting images for the learned features, which could translate some information about their common locations in the lung.
- Score: 8.83608410540057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: X-ray images may present non-trivial features with predictive information of
patients that develop severe symptoms of COVID-19. If true, this hypothesis may
have practical value in allocating resources to particular patients while using
a relatively inexpensive imaging technique. The difficulty of testing such a
hypothesis comes from the need for large sets of labelled data, which need to
be well-annotated and should contemplate the post-imaging severity outcome.
This paper presents an original methodology for extracting semantic features
that correlate to severity from a data set with patient ICU admission labels
through interpretable models. The methodology employs a neural network trained
to recognise lung pathologies to extract the semantic features, which are then
analysed with low-complexity models to limit overfitting while increasing
interpretability. This analysis points out that only a few features explain
most of the variance between patients that developed severe symptoms. When
applied to an unrelated larger data set with pathology-related clinical notes,
the method has shown to be capable of selecting images for the learned
features, which could translate some information about their common locations
in the lung. Besides attesting separability on patients that eventually develop
severe symptoms, the proposed methods represent a statistical approach
highlighting the importance of features related to ICU admission that may have
been only qualitatively reported. While handling limited data sets, notable
methodological aspects are adopted, such as presenting a state-of-the-art lung
segmentation network and the use of low-complexity models to avoid overfitting.
The code for methodology and experiments is also available.
Related papers
- Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
variations in CT scanner models and acquisition protocols introduce significant variability in the extracted radiomic features.
LTDiff++ is a multiscale latent diffusion model designed to enhance feature extraction in medical imaging.
arXiv Detail & Related papers (2024-10-05T02:13:57Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
The Intensive Care Unit (ICU) is one of the most important parts of a hospital, which admits critically ill patients and provides continuous monitoring and treatment.
Various patient outcome prediction methods have been attempted to assist healthcare professionals in clinical decision-making.
arXiv Detail & Related papers (2023-08-24T05:26:56Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
We propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups.
Our method can simply expand limited clinical datasets making them suitable to train machine learning pipelines.
arXiv Detail & Related papers (2023-04-19T09:52:50Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis [10.133715767542386]
We propose a knowledge-driven and data-driven framework for lung disease diagnosis.
We formulate diagnosis rules according to authoritative clinical medicine guidelines and learn the weights of rules from text data.
A multimodal fusion consisting of text and image data is designed to infer the marginal probability of lung disease.
arXiv Detail & Related papers (2022-02-09T04:12:30Z) - Covid-19 Detection from Chest X-ray and Patient Metadata using Graph
Convolutional Neural Networks [6.420262246029286]
We propose a novel Graph Convolution Neural Network (GCN) that is capable of identifying bio-markers of Covid-19 pneumonia.
The proposed method exploits important relational knowledge between data instances and their features using graph representation and applies convolution to learn the graph data.
arXiv Detail & Related papers (2021-05-20T13:13:29Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.