Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images
- URL: http://arxiv.org/abs/2410.04000v2
- Date: Sat, 26 Oct 2024 18:57:56 GMT
- Title: Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images
- Authors: Rabeya Tus Sadia, Jie Zhang, Jin Chen,
- Abstract summary: variations in CT scanner models and acquisition protocols introduce significant variability in the extracted radiomic features.
LTDiff++ is a multiscale latent diffusion model designed to enhance feature extraction in medical imaging.
- Score: 5.395912799904941
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various imaging modalities are used in patient diagnosis, each offering unique advantages and valuable insights into anatomy and pathology. Computed Tomography (CT) is crucial in diagnostics, providing high-resolution images for precise internal organ visualization. CT's ability to detect subtle tissue variations is vital for diagnosing diseases like lung cancer, enabling early detection and accurate tumor assessment. However, variations in CT scanner models and acquisition protocols introduce significant variability in the extracted radiomic features, even when imaging the same patient. This variability poses considerable challenges for downstream research and clinical analysis, which depend on consistent and reliable feature extraction. Current methods for medical image feature extraction, often based on supervised learning approaches, including GAN-based models, face limitations in generalizing across different imaging environments. In response to these challenges, we propose LTDiff++, a multiscale latent diffusion model designed to enhance feature extraction in medical imaging. The model addresses variability by standardizing non-uniform distributions in the latent space, improving feature consistency. LTDiff++ utilizes a UNet++ encoder-decoder architecture coupled with a conditional Denoising Diffusion Probabilistic Model (DDPM) at the latent bottleneck to achieve robust feature extraction and standardization. Extensive empirical evaluations on both patient and phantom CT datasets demonstrate significant improvements in image standardization, with higher Concordance Correlation Coefficients (CCC) across multiple radiomic feature categories. Through these advancements, LTDiff++ represents a promising solution for overcoming the inherent variability in medical imaging data, offering improved reliability and accuracy in feature extraction processes.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
We propose a novel deep learning network designed to accurately classify lung cancer subtype with multi-dimensional and multi-modality images.
The strength of the proposed model lies in its ability to dynamically process both paired CT-pathological image sets and independent CT image sets.
We also develop a contrastive constraint module, which quantitatively maps the cross-modality associations through network training.
arXiv Detail & Related papers (2024-07-18T01:42:00Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Latent Diffusion Model for Medical Image Standardization and Enhancement [11.295078152769559]
DiffusionCT is a score-based DDPM model that transforms disparate non-standard distributions into a standardized form.
The architecture comprises a U-Net-based encoder-decoder, augmented by a DDPM model integrated at the bottleneck position.
Empirical tests on patient CT images indicate notable improvements in image standardization using DiffusionCT.
arXiv Detail & Related papers (2023-10-08T17:11:14Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - DiffusionCT: Latent Diffusion Model for CT Image Standardization [9.312998333278802]
Existing CT image harmonization models rely on GAN-based supervised or semi-supervised learning, with limited performance.
This work addresses the issue of CT image harmonization using a new diffusion-based model, named DiffusionCT, to standardize CT images acquired from different vendors and protocols.
Experiments demonstrate a significant improvement in the performance of the standardization task using DiffusionCT.
arXiv Detail & Related papers (2023-01-20T22:13:48Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
COVID-19 diagnosis can now be done efficiently using PCR tests, but this use case exemplifies the need for a methodology to overcome data variability issues.
We propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans.
arXiv Detail & Related papers (2022-08-19T15:49:47Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.