論文の概要: Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression
- arxiv url: http://arxiv.org/abs/2009.12656v4
- Date: Tue, 23 Mar 2021 05:04:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 09:13:37.860740
- Title: Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression
- Title(参考訳): マルチモーダル電子健康記録データを用いたトランスフォーマーからの双方向表現学習による抑うつ予測
- Authors: Yiwen Meng, William Speier, Michael K. Ong and Corey W. Arnold
- Abstract要約: うつ病の予測のために,ERHシーケンス上で双方向の表現学習を行うための時間的深層学習モデルを提案する。
このモデルでは, 曲線(PRAUC)下において, 最良ベースラインモデルと比較して, 抑うつ予測において0.70から0.76まで, 精度・リコール面積の最大値が得られた。
- 参考スコア(独自算出の注目度): 11.1492931066686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in machine learning algorithms have had a beneficial impact on
representation learning, classification, and prediction models built using
electronic health record (EHR) data. Effort has been put both on increasing
models' overall performance as well as improving their interpretability,
particularly regarding the decision-making process. In this study, we present a
temporal deep learning model to perform bidirectional representation learning
on EHR sequences with a transformer architecture to predict future diagnosis of
depression. This model is able to aggregate five heterogenous and
high-dimensional data sources from the EHR and process them in a temporal
manner for chronic disease prediction at various prediction windows. We applied
the current trend of pretraining and fine-tuning on EHR data to outperform the
current state-of-the-art in chronic disease prediction, and to demonstrate the
underlying relation between EHR codes in the sequence. The model generated the
highest increases of precision-recall area under the curve (PRAUC) from 0.70 to
0.76 in depression prediction compared to the best baseline model. Furthermore,
the self-attention weights in each sequence quantitatively demonstrated the
inner relationship between various codes, which improved the model's
interpretability. These results demonstrate the model's ability to utilize
heterogeneous EHR data to predict depression while achieving high accuracy and
interpretability, which may facilitate constructing clinical decision support
systems in the future for chronic disease screening and early detection.
- Abstract(参考訳): 機械学習アルゴリズムの進歩は、電子健康記録(EHR)データを用いて構築された表現学習、分類、予測モデルに有益な影響を与えた。
特に意思決定プロセスに関して、モデルの全体的なパフォーマンス向上と解釈性の向上に努力が払われている。
本研究では,ehr系列上で双方向表現学習を行うための時間的深層学習モデルを提案し,うつ病の今後の診断を予測する。
このモデルは、ehrから5つの異種および高次元のデータソースを集約し、様々な予測ウィンドウで慢性疾患予測のための時間的手法で処理することができる。
本研究は,慢性疾患予測におけるEHRデータの事前トレーニングと微調整の現在の傾向を適用し,そのシーケンスにおけるEHRコード間の基盤的関係を示す。
このモデルは、曲線(prauc)下の精度再呼び出し面積を、最良ベースラインモデルと比較して、抑うつ予測の0.70から0.76に高めた。
さらに,各系列の自己付着重みは,各符号間の内的関係を定量的に示し,モデルの解釈性が向上した。
以上の結果から,ehrデータを利用して抑うつを予測し,高い精度と解釈性を実現し,慢性疾患スクリーニングと早期発見のための臨床判断支援システムの構築が容易になる可能性が示唆された。
関連論文リスト
- Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
グラディエントブースティングモデル(GBM)は、トレーニング速度、解釈可能性、信頼性の点で、シーケンシャルモデルを上回った。
タイムリーな介入のために5分間の予測ウィンドウが選択された。
本研究は、トリアージを改善し、アラーム疲労を軽減するMLの可能性を強調した。
論文 参考訳(メタデータ) (2024-10-30T23:24:28Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - MPRE: Multi-perspective Patient Representation Extractor for Disease
Prediction [3.914545513460964]
疾患予測のための多視点患者表現エクストラクタ(MPRE)を提案する。
具体的には、動的特徴の傾向と変動情報を抽出する周波数変換モジュール(FTM)を提案する。
2D Multi-Extraction Network (2D MEN) において、傾向と変動に基づいて2次元時間テンソルを形成する。
また,FODAM(First-Order difference Attention Mechanism)も提案する。
論文 参考訳(メタデータ) (2024-01-01T13:52:05Z) - New Epochs in AI Supervision: Design and Implementation of an Autonomous
Radiology AI Monitoring System [5.50085484902146]
本稿では,放射線学AI分類モデルの性能を実際に監視するための新しい手法を提案する。
予測分散と時間安定性という2つの指標を提案し、AIのパフォーマンス変化のプリエンプティブアラートに使用する。
論文 参考訳(メタデータ) (2023-11-24T06:29:04Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Deep Stable Representation Learning on Electronic Health Records [8.256340233221112]
CHE(Causal Healthcare Embedding)は、診断と処置の依存関係を取り除くことで、突発的な統計的関係を取り除くことを目的としている。
提案手法は,既存の深層学習モデルをEHR上で拡張可能な,フレキシブルなプラグアンドプレイモジュールとして利用できる。
論文 参考訳(メタデータ) (2022-09-03T04:10:45Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。