論文の概要: Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices
- arxiv url: http://arxiv.org/abs/2410.23503v1
- Date: Wed, 30 Oct 2024 23:24:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:01:11.268617
- Title: Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices
- Title(参考訳): 医療用グレード装置の生理・デモグラフィーデータを用いたCBRNE緊急シナリオにおける低酸素度トリアージのための機械学習モデルの開発と比較解析
- Authors: Santino Nanini, Mariem Abid, Yassir Mamouni, Arnaud Wiedemann, Philippe Jouvet, Stephane Bourassa,
- Abstract要約: グラディエントブースティングモデル(GBM)は、トレーニング速度、解釈可能性、信頼性の点で、シーケンシャルモデルを上回った。
タイムリーな介入のために5分間の予測ウィンドウが選択された。
本研究は、トリアージを改善し、アラーム疲労を軽減するMLの可能性を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents the development of machine learning (ML) models to predict hypoxemia severity during emergency triage, especially in Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) events, using physiological data from medical-grade sensors. Gradient Boosting Models (XGBoost, LightGBM, CatBoost) and sequential models (LSTM, GRU) were trained on physiological and demographic data from the MIMIC-III and IV datasets. A robust preprocessing pipeline addressed missing data, class imbalances, and incorporated synthetic data flagged with masks. Gradient Boosting Models (GBMs) outperformed sequential models in terms of training speed, interpretability, and reliability, making them well-suited for real-time decision-making. While their performance was comparable to that of sequential models, the GBMs used score features from six physiological variables derived from the enhanced National Early Warning Score (NEWS) 2, which we termed NEWS2+. This approach significantly improved prediction accuracy. While sequential models handled temporal data well, their performance gains did not justify the higher computational cost. A 5-minute prediction window was chosen for timely intervention, with minute-level interpolations standardizing the data. Feature importance analysis highlighted the significant role of mask and score features in enhancing both transparency and performance. Temporal dependencies proved to be less critical, as Gradient Boosting Models were able to capture key patterns effectively without relying on them. This study highlights ML's potential to improve triage and reduce alarm fatigue. Future work will integrate data from multiple hospitals to enhance model generalizability across clinical settings.
- Abstract(参考訳): 本稿では,特に化学,生物,放射線,核,爆発(CBRNE)イベントにおいて,医療用センサーの生理的データを用いて,緊急トリアージ時の低酸素血症の重症度を予測する機械学習(ML)モデルの開発について述べる。
MIMIC-IIIおよびIVデータセットの生理的および人口統計学的データに基づいて,XGBoost, LightGBM, CatBoost) と逐次モデル (LSTM, GRU) を訓練した。
堅牢な前処理パイプラインは、欠落したデータ、クラス不均衡に対処し、マスクでフラグ付けされた合成データを組み込んだ。
グラディエントブースティングモデル(GBMs)は、トレーニング速度、解釈可能性、信頼性という点で逐次モデルよりも優れており、リアルタイムな意思決定に適している。
その性能はシーケンシャルモデルに匹敵するものであったが, NEWS2+を改良したNEWS(National Early Warning Score)2から派生した6つの生理的変数のスコア特性を用いて評価した。
このアプローチは予測精度を大幅に改善した。
逐次モデルは時間データをうまく処理するが、その性能向上は高い計算コストを正当化しなかった。
タイムリーな介入のために5分間の予測ウィンドウが選択され、データを標準化する分レベル補間が行われた。
特徴重要度分析は、透明性とパフォーマンスの両面において、マスクとスコアの特徴の重要な役割を強調した。
グラディエント・ブースティング・モデル(Gradient Boosting Models)は、それらに頼ることなく、重要なパターンを効果的にキャプチャすることができたため、一時的な依存関係はそれほど重要ではないことが判明した。
本研究は、トリアージを改善し、アラーム疲労を軽減するMLの可能性を強調した。
今後は、複数の病院のデータを統合して、臨床現場におけるモデルの一般化性を高める予定だ。
関連論文リスト
- Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - CEL: A Continual Learning Model for Disease Outbreak Prediction by
Leveraging Domain Adaptation via Elastic Weight Consolidation [4.693707128262634]
本研究では,EWC(Elastic Weight Consolidation)による領域適応を利用した連続学習のための新しいCELモデルを提案する。
CELの堅牢性と信頼性は、既存のベンチマーク研究と比較して65%の忘れ込み率と18%のメモリ安定性で裏付けられている。
論文 参考訳(メタデータ) (2024-01-17T03:26:04Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - EventScore: An Automated Real-time Early Warning Score for Clinical
Events [3.3039612529376625]
臨床劣化を示す各種臨床事象の早期予測のための解釈可能なモデルを構築した。
このモデルは2つのデータセットと4つの臨床イベントで評価される。
私達のモデルは手動で記録された特徴を要求しないで完全に自動化することができます。
論文 参考訳(メタデータ) (2021-02-11T11:55:08Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
うつ病の予測のために,ERHシーケンス上で双方向の表現学習を行うための時間的深層学習モデルを提案する。
このモデルでは, 曲線(PRAUC)下において, 最良ベースラインモデルと比較して, 抑うつ予測において0.70から0.76まで, 精度・リコール面積の最大値が得られた。
論文 参考訳(メタデータ) (2020-09-26T17:56:37Z) - Forecasting adverse surgical events using self-supervised transfer
learning for physiological signals [7.262231066394781]
本稿では,PHASE という,伝送可能な埋め込み方式(時系列信号を予測機械学習モデルのための入力特徴に変換する方法)を提案する。
我々は,2つの手術室(OR)データセットと集中治療室(ICU)データセットの5万件以上の手術群について,分単位でPHASEを評価した。
1つのデータセットに埋め込みモデルを訓練し、信号を埋め込み、未知のデータに有害事象を予測する伝達学習環境において、PHASEは従来の手法に比べて計算コストの低い精度で予測精度を著しく向上させる。
論文 参考訳(メタデータ) (2020-02-12T02:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。