Quantum Simulations of Chemistry in First Quantization with any Basis Set
- URL: http://arxiv.org/abs/2408.03145v2
- Date: Mon, 12 Aug 2024 15:58:52 GMT
- Title: Quantum Simulations of Chemistry in First Quantization with any Basis Set
- Authors: Timothy N. Georges, Marius Bothe, Christoph Sünderhauf, Bjorn K. Berntson, Róbert Izsák, Aleksei V. Ivanov,
- Abstract summary: Quantum computation of the energy of molecules and materials is one of the most promising applications of fault-tolerant quantum computers.
Previous work has mainly represented the Hamiltonian of the system in second quantization.
We present a method to solve the generic ground-state chemistry problem in first quantization on a fault-tolerant quantum computer using any basis set.
This allows for calculations in the active space using modern quantum chemistry basis sets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computation of the energy of molecules and materials is one of the most promising applications of fault-tolerant quantum computers. However, practical applications require algorithms with reduced resource requirements. Previous work has mainly represented the Hamiltonian of the system in second quantization. Existing methods in first quantization are limited to grid-based approaches that do not allow for active space calculations. In this work, we present a method to solve the generic ground-state chemistry problem in first quantization on a fault-tolerant quantum computer using any basis set. This allows for calculations in the active space using modern quantum chemistry basis sets. We derive a linear-combination-of-unitaries decomposition for a chemical Hamiltonian in first quantization and then construct an efficient block encoding, exploiting sparsity of the Hamiltonian. For active space calculations using a molecular orbital basis set, we achieve an asymptotic speed up in Toffoli-gate count compared to the equivalent method in second quantization [Berry, et. al. Quantum 3, 208 (2019)]. We also consider the dual plane waves for materials simulations and find that in physically interesting regimes we achieve orders of magnitude improvement in quantum resources compared to the second quantization counterpart. In some instances, our approach provides similar or even lower resources compared to the first quantization plane wave algorithm of Refs.[Babbush, et. al npj Quantum Inf 5(1) 92 (2019), Su et. al PRX Quantum 2(4), 040332 (2021)] that, unlike our approach, avoids loading the classical data from quantum memory. This work opens up possibilities to reduce quantum resources even further using factorization methods of a Hamiltonian or modern pseudopotentials. Furthermore, our approach can be adapted to other applications, such as the vibrational properties of chemical systems.
Related papers
- Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Dequantizing the Quantum Singular Value Transformation: Hardness and
Applications to Quantum Chemistry and the Quantum PCP Conjecture [0.0]
We show that the Quantum Singular Value Transformation can be efficiently "dequantized"
We show that with inverse-polynomial precision, the same problem becomes BQP-complete.
We also discuss how this dequantization technique may help make progress on the central quantum PCP.
arXiv Detail & Related papers (2021-11-17T12:50:13Z) - Full-Dimensional Schr\"odinger Wavefunction Calculations using Tensors
and Quantum Computers: the Cartesian component-separated approach [0.0]
We explore a radically different approach, based on separability by Cartesian component, rather than by particle.
The approach appears to be very well suited for 3D grid-based methods in quantum chemistry.
We present an implementation for quantum computers, for which both the number of qubits, and the number of quantum gates, may be substantially reduced.
arXiv Detail & Related papers (2021-05-08T21:54:45Z) - Calculation of the ground-state Stark effect in small molecules using
the variational quantum eigensolver [0.0]
We study a quantum simulation for the hydrogen (H2) and lithium hydride (LiH) molecules, at an actual commercially available quantum computer, the IBM Q.
Using the Variational Quantum Eigensolver (VQE) method, we study the molecule's ground state energy versus interatomic distance, under the action of stationary electric fields.
arXiv Detail & Related papers (2021-03-22T11:49:42Z) - Sparse-Hamiltonian approach to the time evolution of molecules on
quantum computers [0.0]
We explore the possibility of mapping the molecular problem onto a sparse Hubbard-like Hamiltonian.
This allows a Green's-function-based approach to electronic structure via a hybrid quantum-classical algorithm.
arXiv Detail & Related papers (2020-09-26T20:32:06Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Hybrid Quantum-Classical Eigensolver Without Variation or Parametric
Gates [0.0]
We present a process for obtaining the eigenenergy spectrum of electronic quantum systems.
This is achieved by projecting the Hamiltonian of a quantum system onto a limited effective Hilbert space.
A process for preparing short depth quantum circuits to measure the corresponding diagonal and off-diagonal terms of the effective Hamiltonian is given.
arXiv Detail & Related papers (2020-08-26T02:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.