論文の概要: NN-EVCLUS: Neural Network-based Evidential Clustering
- arxiv url: http://arxiv.org/abs/2009.12795v2
- Date: Thu, 27 May 2021 01:56:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 03:10:20.027460
- Title: NN-EVCLUS: Neural Network-based Evidential Clustering
- Title(参考訳): NN-EVCLUS:ニューラルネットワークによるエビデンシャルクラスタリング
- Authors: Thierry Denoeux
- Abstract要約: 本稿では,NN-EVCLUSと呼ばれるニューラルネットワークに基づく明確なクラスタリングアルゴリズムを提案する。
属性ベクトルから質量関数への写像を学習し、より類似した入力がより低い競合度を持つ質量関数の出力にマッピングされるようにする。
ネットワークは、すべてのオブジェクトまたはいくつかのオブジェクトペアの相違点と相反点の差を最小限に抑えるように訓練されている。
- 参考スコア(独自算出の注目度): 6.713564212269253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evidential clustering is an approach to clustering based on the use of
Dempster-Shafer mass functions to represent cluster-membership uncertainty. In
this paper, we introduce a neural-network based evidential clustering
algorithm, called NN-EVCLUS, which learns a mapping from attribute vectors to
mass functions, in such a way that more similar inputs are mapped to output
mass functions with a lower degree of conflict. The neural network can be
paired with a one-class support vector machine to make it robust to outliers
and allow for novelty detection. The network is trained to minimize the
discrepancy between dissimilarities and degrees of conflict for all or some
object pairs. Additional terms can be added to the loss function to account for
pairwise constraints or labeled data, which can also be used to adapt the
metric. Comparative experiments show the superiority of N-EVCLUS over
state-of-the-art evidential clustering algorithms for a range of unsupervised
and constrained clustering tasks involving both attribute and dissimilarity
data.
- Abstract(参考訳): エビデンシャルクラスタリング(Evidential clustering)は、クラスタメンバシップの不確実性を表すためにDempster-Shaferマス関数を使用するクラスタリングのアプローチである。
本稿では,属性ベクトルからマス関数へのマッピングを学習するnn-evclusと呼ばれるニューラルネットワークに基づく実証的クラスタリングアルゴリズムを提案する。
ニューラルネットワークは、一級サポートベクターマシンと組み合わせて、外れ値に対して堅牢で、新規性検出を可能にする。
ネットワークは、すべてのまたはいくつかのオブジェクトペアの相違点と相反点の差を最小限に抑えるように訓練されている。
損失関数に追加用語を加えることで、ペアの制約やラベル付きデータを考慮できる。
比較実験により、属性と異種データの両方を含む教師なしおよび制約付きクラスタリングタスクにおいて、n-evclusが最先端の実証的クラスタリングアルゴリズムよりも優れていることが示された。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Nonlinear subspace clustering by functional link neural networks [20.972039615938193]
フィードフォワードニューラルネットワークに基づくサブスペースクラスタリングは、いくつかの高度なサブスペースクラスタリングアルゴリズムよりも優れたクラスタリング精度を提供することを示した。
我々は,データサンプルを非線形領域に変換するために,関数型リンクニューラルネットワークを用いる。
本稿では,線形サブスペースクラスタリング手法と関数型リンクニューラルネットワークサブスペースクラスタリング手法を組み合わせた凸結合サブスペースクラスタリング手法を提案する。
論文 参考訳(メタデータ) (2024-02-03T06:01:21Z) - Learning Neural Eigenfunctions for Unsupervised Semantic Segmentation [12.91586050451152]
スペクトルクラスタリング(英: Spectral clustering)は、異なるクラスタを構築するために画素のスペクトル埋め込みを計算する理論上の解である。
現在のアプローチは、まだスペクトル分解の非効率性と、試験データに適用する際の柔軟性に悩まされている。
この研究は、スペクトルクラスタリングをニューラルネットワークに基づく固有関数を用いてスペクトル埋め込みを生成するパラメトリックアプローチとしてキャストすることで、これらの問題に対処する。
実際には、神経固有関数は軽量であり、事前訓練されたモデルの特徴を入力とし、トレーニング効率を改善し、より密集した予測のための事前訓練されたモデルの可能性を解き放つ。
論文 参考訳(メタデータ) (2023-04-06T03:14:15Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Revisiting Gaussian Neurons for Online Clustering with Unknown Number of
Clusters [0.0]
参照するクラスタ数の最大限のオンラインクラスタリングを行う、新しいローカルラーニングルールが提示される。
実験結果は,学習パラメータの安定性を多数のトレーニングサンプルで実証した。
論文 参考訳(メタデータ) (2022-05-02T14:01:40Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDECは、共同統計表現学習とクラスタリングのための教師なしのフレームワークである。
実験により,これらの表現を用いることで,様々な画像データセットにまたがる不均衡な画像クラスタリングの結果を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2021-09-11T09:26:52Z) - Attention-driven Graph Clustering Network [49.040136530379094]
我々は、注意駆動グラフクラスタリングネットワーク(AGCN)という新しいディープクラスタリング手法を提案する。
AGCNは、ノード属性特徴とトポロジグラフ特徴を動的に融合するために、不均一な融合モジュールを利用する。
AGCNは、教師なしの方法で特徴学習とクラスタ割り当てを共同で行うことができる。
論文 参考訳(メタデータ) (2021-08-12T02:30:38Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
本稿では,画像の集合を未知の個数にクラスタリングする方法を学ぶ階層型グラフニューラルネットワーク(GNN)モデルを提案する。
我々の階層的なGNNは、階層の各レベルで予測される連結コンポーネントをマージして、次のレベルで新しいグラフを形成するために、新しいアプローチを用いています。
論文 参考訳(メタデータ) (2021-07-03T01:28:42Z) - Joint Optimization of an Autoencoder for Clustering and Embedding [22.16059261437617]
本稿では,自動エンコーダとクラスタリングを同時に学習する代替手法を提案する。
この単純なニューラルネットワークはクラスタリングモジュールと呼ばれ、ディープオートエンコーダに統合され、ディープクラスタリングモデルとなる。
論文 参考訳(メタデータ) (2020-12-07T14:38:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。