論文の概要: Learning Neural Eigenfunctions for Unsupervised Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2304.02841v1
- Date: Thu, 6 Apr 2023 03:14:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 15:24:07.060076
- Title: Learning Neural Eigenfunctions for Unsupervised Semantic Segmentation
- Title(参考訳): 教師なしセマンティックセグメンテーションのためのニューラル固有関数の学習
- Authors: Zhijie Deng and Yucen Luo
- Abstract要約: スペクトルクラスタリング(英: Spectral clustering)は、異なるクラスタを構築するために画素のスペクトル埋め込みを計算する理論上の解である。
現在のアプローチは、まだスペクトル分解の非効率性と、試験データに適用する際の柔軟性に悩まされている。
この研究は、スペクトルクラスタリングをニューラルネットワークに基づく固有関数を用いてスペクトル埋め込みを生成するパラメトリックアプローチとしてキャストすることで、これらの問題に対処する。
実際には、神経固有関数は軽量であり、事前訓練されたモデルの特徴を入力とし、トレーニング効率を改善し、より密集した予測のための事前訓練されたモデルの可能性を解き放つ。
- 参考スコア(独自算出の注目度): 12.91586050451152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised semantic segmentation is a long-standing challenge in computer
vision with great significance. Spectral clustering is a theoretically grounded
solution to it where the spectral embeddings for pixels are computed to
construct distinct clusters. Despite recent progress in enhancing spectral
clustering with powerful pre-trained models, current approaches still suffer
from inefficiencies in spectral decomposition and inflexibility in applying
them to the test data. This work addresses these issues by casting spectral
clustering as a parametric approach that employs neural network-based
eigenfunctions to produce spectral embeddings. The outputs of the neural
eigenfunctions are further restricted to discrete vectors that indicate
clustering assignments directly. As a result, an end-to-end NN-based paradigm
of spectral clustering emerges. In practice, the neural eigenfunctions are
lightweight and take the features from pre-trained models as inputs, improving
training efficiency and unleashing the potential of pre-trained models for
dense prediction. We conduct extensive empirical studies to validate the
effectiveness of our approach and observe significant performance gains over
competitive baselines on Pascal Context, Cityscapes, and ADE20K benchmarks.
- Abstract(参考訳): 教師なしセマンティックセグメンテーションはコンピュータビジョンにおける長年の課題であり、非常に重要である。
スペクトルクラスタリングは理論的に根拠のある解であり、ピクセルのスペクトル埋め込みは異なるクラスタを構成するために計算される。
強力な事前学習モデルによるスペクトルクラスタリングの最近の進歩にもかかわらず、現在のアプローチは、スペクトル分解の非効率とテストデータへの適用の柔軟性に苦しんでいる。
この研究は、スペクトルクラスタリングをニューラルネットワークに基づく固有関数を用いてスペクトル埋め込みを生成するパラメトリックアプローチとしてキャストすることで、これらの問題に対処する。
神経固有関数の出力は、クラスタリングの割り当てを直接示す離散ベクトルにさらに制限される。
その結果、スペクトルクラスタリングのエンドツーエンドNNベースのパラダイムが出現する。
実際、神経固有関数は軽量であり、事前訓練されたモデルから特徴を入力とし、トレーニング効率を改善し、密集した予測のために事前訓練されたモデルの可能性を解き放つ。
提案手法の有効性を検証し,Pascal Context,Cityscapes,ADE20Kベンチマーク上での競合ベースラインよりも大きなパフォーマンス向上を観測する。
関連論文リスト
- Image Clustering Algorithm Based on Self-Supervised Pretrained Models and Latent Feature Distribution Optimization [4.39139858370436]
本稿では,自己教師付き事前学習モデルと潜在特徴分布最適化に基づく画像クラスタリングアルゴリズムを提案する。
我々の手法は最新のクラスタリングアルゴリズムより優れ、最先端のクラスタリング結果が得られる。
論文 参考訳(メタデータ) (2024-08-04T04:08:21Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - A Deep Dive into Deep Cluster [0.2578242050187029]
DeepClusterは、ビジュアル表現のシンプルでスケーラブルな教師なし事前トレーニングである。
本稿では,DeepClusterの収束と性能が,畳み込み層のランダムフィルタの品質と選択されたクラスタ数の相互作用に依存することを示す。
論文 参考訳(メタデータ) (2022-07-24T22:55:09Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
大規模で複雑な画像のクラスタ割り当ては、パターン認識とコンピュータビジョンにおいて重要かつ困難な作業です。
反復最適化による新しい進化的教師なし学習表現モデルを提案する。
ファジィメンバシップを利用して深層クラスタ割り当ての明確な構造を表現するディープリコンストラクションモデルに対して,共同でファジィクラスタリングを行った。
論文 参考訳(メタデータ) (2021-03-31T13:58:10Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Intraclass clustering: an implicit learning ability that regularizes
DNNs [22.732204569029648]
ディープニューラルネットワークは,クラス間で有意義なクラスタを抽出する能力によって正規化されることを示す。
クラス内クラスタリングの尺度は、トレーニングデータのニューロンおよび層レベルの表現に基づいて設計される。
論文 参考訳(メタデータ) (2021-03-11T15:26:27Z) - Robust spectral clustering using LASSO regularization [0.0]
本稿では,ブロックモデルと密接な関係を持つ新しいランダムモデルを用いて,スペクトルクラスタリングの一種である1スペクトルクラスタリングを提案する。
その目標は、グラフの自然な構造を明らかにする1の最小化問題のスパース固有基底解を促進することである。
論文 参考訳(メタデータ) (2020-04-08T07:12:56Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。