Femtotesla direct magnetic gradiometer using a single multipass cell
- URL: http://arxiv.org/abs/2009.13212v2
- Date: Thu, 21 Jan 2021 11:32:35 GMT
- Title: Femtotesla direct magnetic gradiometer using a single multipass cell
- Authors: V. G. Lucivero, W. Lee, N. Dural and M. V. Romalis
- Abstract summary: We describe a direct gradiometer using optical pumping with opposite circular polarization in two $87$Rb atomic ensembles within a single multipass cell.
A far-detuned probe laser undergoes a near-zero paramagnetic Faraday rotation due to the intrinsic subtraction of two contributions exceeding 3.5 rad from the highly-polarized ensembles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe a direct gradiometer using optical pumping with opposite circular
polarization in two $^{87}$Rb atomic ensembles within a single multipass cell.
A far-detuned probe laser undergoes a near-zero paramagnetic Faraday rotation
due to the intrinsic subtraction of two contributions exceeding 3.5 rad from
the highly-polarized ensembles. We develop analysis methods for the direct
gradiometer signal and measure a gradiometer sensitivity of $10.1$
fT/cm$\sqrt{\mathrm{Hz}}$. We also demonstrate that our multipass design, in
addition to increasing the optical depth, provides a fundamental advantage due
to the significantly reduced effect of atomic diffusion on the spin noise
time-correlation, in excellent agreement with theoretical estimate.
Related papers
- Dual axis atomic magnetometer and gyroscope enabled by nuclear spin perturbation [0.0]
We present a new method for co-magnetometry between a single noble gas and alkali species.
While similar to well-known devices using self-compensation, our scheme introduces magnetic pulses that controllably perturb the noble gas.
These applied pulses allow our scheme to measure, rather than just suppress, the effect of magnetic noise.
arXiv Detail & Related papers (2024-11-08T04:22:15Z) - Microwave transitions in atomic sodium: Radiometry and polarimetry using
the sodium layer [0.0]
We focus our studies on the microwave band 90-150 GHz, due to its relevance to laser excitation in the Earth's upper-atmospheric sodium layer for wavelength-dependent radiometry and polarimetry.
We present the most efficient transition coefficients in this range, as well as the scalar and tensor polarizabilities compared with available experimental and theoretical data.
arXiv Detail & Related papers (2024-01-24T00:26:46Z) - Atomic diffraction from single-photon transitions in gravity and
Standard-Model extensions [49.26431084736478]
We study single-photon transitions, both magnetically-induced and direct ones, in gravity and Standard-Model extensions.
We take into account relativistic effects like the coupling of internal to center-of-mass degrees of freedom, induced by the mass defect.
arXiv Detail & Related papers (2023-09-05T08:51:42Z) - Closed-Loop Dual-Atom-Interferometer Inertial Sensor with Continuous Cold Atomic Beams [1.3452520136741124]
Sensor operates with double-loop atom interferometers, which share the same Raman light pulses in a spatially separated Mach-Zehnder configuration.
Acceleration and the rotation rate are decoupled and simultaneously measured by the sum and difference of dual atom-interferometer signals.
arXiv Detail & Related papers (2022-10-26T07:10:29Z) - Colliding-probe bi-atomic magnetometers via energy circulation: Breaking
symmetry-enforced magneto-optical rotation blockade [0.0]
We show a propagation growth blockade in single probe based magnetic field sensing schemes.
We show, both experimentally and theoretically, a colliding probe bi-atomic magnetometer that lifts this NMORE blockade.
The new technique may have broad applications in photon gates and switching operations.
arXiv Detail & Related papers (2022-02-25T15:45:31Z) - Femtotesla nearly quantum-noise-limited pulsed gradiometer at
Earth-scale fields [0.0]
We describe a finite fields magnetic gradiometer using an intense pulsed laser to polarize a $87$Rb atomic ensemble and a compact VCSEL probe laser to detect paramagnetic rotation in a single multipass cell.
arXiv Detail & Related papers (2021-12-16T16:39:11Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - High-Frequency Gravitational-Wave Detection Using a Chiral Resonant
Mechanical Element and a Short Unstable Optical Cavity [59.66860395002946]
We suggest the measurement of the twist of a chiral mechanical element induced by a gravitational wave.
The induced twist rotates a flat optical mirror on top of this chiral element, leading to the deflection of an incident laser beam.
We estimate a gravitational wave strain sensitivity between 10-21/sqrtHz and 10-23/sqrtHz at around 10 kHz frequency.
arXiv Detail & Related papers (2020-07-15T20:09:43Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.