The Smart Parking Management System
- URL: http://arxiv.org/abs/2009.13443v1
- Date: Mon, 28 Sep 2020 16:08:10 GMT
- Title: The Smart Parking Management System
- Authors: Amira. A. Elsonbaty and Mahmoud Shams
- Abstract summary: This paper proposes the Smart Parking Management System (SPMS) that depends on Arduino parts, Android applications, and based on IoT.
IR sensors are utilized to know if a car park space is allowed.
Its area data are transmitted using the WI-FI module to the server and are recovered by the mobile application.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With growing, Car parking increases with the number of car users. With the
increased use of smartphones and their applications, users prefer mobile
phone-based solutions. This paper proposes the Smart Parking Management System
(SPMS) that depends on Arduino parts, Android applications, and based on IoT.
This gave the client the ability to check available parking spaces and reserve
a parking spot. IR sensors are utilized to know if a car park space is allowed.
Its area data are transmitted using the WI-FI module to the server and are
recovered by the mobile application which offers many options attractively and
with no cost to users and lets the user check reservation details. With IoT
technology, the smart parking system can be connected wirelessly to easily
track available locations.
Related papers
- Haris: an Advanced Autonomous Mobile Robot for Smart Parking Assistance [2.3779780917500544]
The system employs simultaneous localization and mapping (SLAM) for autonomous navigation and precise mapping of the parking area.
The proposed system has the potential to improve the management of short-term large outdoor parking areas in crowded places such as sports stadiums.
arXiv Detail & Related papers (2024-01-31T11:00:26Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
This paper presents MSight, a cutting-edge roadside perception system specifically designed for automated vehicles.
MSight offers real-time vehicle detection, localization, tracking, and short-term trajectory prediction.
Evaluations underscore the system's capability to uphold lane-level accuracy with minimal latency.
arXiv Detail & Related papers (2023-10-08T21:32:30Z) - Automated Automotive Radar Calibration With Intelligent Vehicles [73.15674960230625]
We present an approach for automated and geo-referenced calibration of automotive radar sensors.
Our method does not require external modifications of a vehicle and instead uses the location data obtained from automated vehicles.
Our evaluation on data from a real testing site shows that our method can correctly calibrate infrastructure sensors in an automated manner.
arXiv Detail & Related papers (2023-06-23T07:01:10Z) - Vehicle Occurrence-based Parking Space Detection [5.084185653371259]
This work presents an automatic parking space detection method, which receives a sequence of images of a parking lot and returns a list of coordinates identifying the detected parking spaces.
The results using twelve different subsets from the PKLot and CNRPark-EXT parking lot datasets show that the method achieved an AP25 score up to 95.60% and AP50 score up to 79.90%.
arXiv Detail & Related papers (2023-06-16T16:22:45Z) - SHINE: Deep Learning-Based Accessible Parking Management System [1.7109513360384465]
An increase in the number of privately owned vehicles has led to the abuse of disabled parking spaces.
Traditional license plate recognition (LPR) systems have proven inefficient in addressing such a problem in real-time.
We have proposed a novel system called, Shine, which uses the deep learning-based object detection algorithm for detecting the vehicle.
arXiv Detail & Related papers (2023-02-02T02:46:52Z) - RFID-Cloud Integration for Smart Management of Public Car Parking Spaces [0.0]
This paper presents a successful proof-of-concept implementation of a framework for managing public car parking spaces.
Reservation of parking slots is done through a cloud-hosted application, while access to and out of the parking slot is enabled through Radio Frequency Identification (RFID) technology.
This framework could bring considerable convenience to City dwellers since motorists only have to drive to a parking space when sure of a vacant parking slot.
arXiv Detail & Related papers (2022-12-25T00:39:42Z) - Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio
Access Technologies [56.77079930521082]
We have conducted a detailed measurement campaign that paves the way to a plethora of diverse ML-based studies.
The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies.
We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage.
arXiv Detail & Related papers (2022-12-20T15:26:39Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
We present a deep neural network (DNN) that detects dynamic obstacles and drivable free space using automotive RADAR sensors.
The network runs faster than real time on an embedded GPU and shows good generalization across geographic regions.
arXiv Detail & Related papers (2022-09-29T01:30:34Z) - ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots [65.33650222396078]
We develop a parking lot environment and collect a dataset of human parking maneuvers.
We compare a multi-modal Long Short-Term Memory (LSTM) prediction model and a Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman Filter (EKF) baseline.
Our results show that 1) intent can be estimated well (roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a major impact on predicting parking trajectory; and 3) the semantic representation of the environment
arXiv Detail & Related papers (2020-04-21T20:46:32Z) - Local Differential Privacy based Federated Learning for Internet of
Things [72.83684013377433]
Internet of Vehicles (IoV) simulates a large variety of crowdsourcing applications such as Waze, Uber, and Amazon Mechanical Turk, etc.
Users of these applications report the real-time traffic information to the cloud server which trains a machine learning model based on traffic information reported by users for intelligent traffic management.
In this paper, we propose to integrate federated learning and local differential privacy (LDP) to facilitate the crowdsourcing applications to achieve the machine learning model.
arXiv Detail & Related papers (2020-04-19T14:03:10Z) - Trained Trajectory based Automated Parking System using Visual SLAM on
Surround View Cameras [0.0]
We discuss the use cases, design and implementation of a trained trajectory automated parking system.
The proposed system is deployed on commercial vehicles and the consumer application is illustrated.
arXiv Detail & Related papers (2020-01-07T16:43:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.