ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots
- URL: http://arxiv.org/abs/2004.10293v1
- Date: Tue, 21 Apr 2020 20:46:32 GMT
- Title: ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots
- Authors: Xu Shen, Ivo Batkovic, Vijay Govindarajan, Paolo Falcone, Trevor
Darrell, and Francesco Borrelli
- Abstract summary: We develop a parking lot environment and collect a dataset of human parking maneuvers.
We compare a multi-modal Long Short-Term Memory (LSTM) prediction model and a Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman Filter (EKF) baseline.
Our results show that 1) intent can be estimated well (roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a major impact on predicting parking trajectory; and 3) the semantic representation of the environment
- Score: 65.33650222396078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the problem of predicting driver behavior in parking lots, an
environment which is less structured than typical road networks and features
complex, interactive maneuvers in a compact space. Using the CARLA simulator,
we develop a parking lot environment and collect a dataset of human parking
maneuvers. We then study the impact of model complexity and feature information
by comparing a multi-modal Long Short-Term Memory (LSTM) prediction model and a
Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman
Filter (EKF) baseline. Our results show that 1) intent can be estimated well
(roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and
CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a
major impact on predicting parking trajectory; and 3) the semantic
representation of the environment improves long term predictions.
Related papers
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - A Novel Temporal Multi-Gate Mixture-of-Experts Approach for Vehicle
Trajectory and Driving Intention Prediction [0.0]
Accurate Vehicle Trajectory Prediction is critical for automated vehicles and advanced driver assistance systems.
There is a significant correlation between driving intentions and vehicle motion.
We propose a novel Temporal Multi-Gate Mixture-of-Experts model for simultaneously predicting the vehicle trajectory and driving intention.
arXiv Detail & Related papers (2023-08-01T13:26:59Z) - Navigating Uncertainty: The Role of Short-Term Trajectory Prediction in
Autonomous Vehicle Safety [3.3659635625913564]
We have developed a dataset for short-term trajectory prediction tasks using the CARLA simulator.
This dataset is extensive and incorporates what is considered complex scenarios - pedestrians crossing the road, vehicles overtaking.
An end-to-end short-term trajectory prediction model using convolutional neural networks (CNN) and long short-term memory (LSTM) networks has also been developed.
arXiv Detail & Related papers (2023-07-11T14:28:33Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - SFMGNet: A Physics-based Neural Network To Predict Pedestrian
Trajectories [2.862893981836593]
We present a physics-based neural network to predict pedestrian trajectories.
We quantitatively and qualitatively evaluate the model with respect to realistic prediction, prediction performance and prediction "interpretability"
Initial results suggest, the model even when solely trained on a synthetic dataset, can predict realistic and interpretable trajectories with better than state-of-the-art accuracy.
arXiv Detail & Related papers (2022-02-06T14:58:09Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z) - A Multi-Modal States based Vehicle Descriptor and Dilated Convolutional
Social Pooling for Vehicle Trajectory Prediction [3.131740922192114]
We propose a vehicle-descriptor based LSTM model with the dilated convolutional social pooling (VD+DCS-LSTM) to cope with the above issues.
Each vehicle's multi-modal state information is employed as our model's input.
The validity of the overall model was verified over the NGSIM US-101 and I-80 datasets.
arXiv Detail & Related papers (2020-03-07T01:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.