Automatic Segmentation, Localization, and Identification of Vertebrae in
3D CT Images Using Cascaded Convolutional Neural Networks
- URL: http://arxiv.org/abs/2009.13798v1
- Date: Tue, 29 Sep 2020 06:11:37 GMT
- Title: Automatic Segmentation, Localization, and Identification of Vertebrae in
3D CT Images Using Cascaded Convolutional Neural Networks
- Authors: Naoto Masuzawa, Yoshiro Kitamura, Keigo Nakamura, Satoshi Iizuka,
Edgar Simo-Serra
- Abstract summary: This paper presents a method for automatic segmentation, localization, and identification of vertebrae in 3D CT images.
Our method tackles all these tasks in a single multi-stage framework without any assumptions.
Our method achieved a mean Dice score of 96%, a mean localization error of 8.3 mm, and a mean identification rate of 84%.
- Score: 22.572414102512358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a method for automatic segmentation, localization, and
identification of vertebrae in arbitrary 3D CT images. Many previous works do
not perform the three tasks simultaneously even though requiring a priori
knowledge of which part of the anatomy is visible in the 3D CT images. Our
method tackles all these tasks in a single multi-stage framework without any
assumptions. In the first stage, we train a 3D Fully Convolutional Networks to
find the bounding boxes of the cervical, thoracic, and lumbar vertebrae. In the
second stage, we train an iterative 3D Fully Convolutional Networks to segment
individual vertebrae in the bounding box. The input to the second networks have
an auxiliary channel in addition to the 3D CT images. Given the segmented
vertebra regions in the auxiliary channel, the networks output the next
vertebra. The proposed method is evaluated in terms of segmentation,
localization, and identification accuracy with two public datasets of 15 3D CT
images from the MICCAI CSI 2014 workshop challenge and 302 3D CT images with
various pathologies introduced in [1]. Our method achieved a mean Dice score of
96%, a mean localization error of 8.3 mm, and a mean identification rate of
84%. In summary, our method achieved better performance than all existing works
in all the three metrics.
Related papers
- Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
We propose a multi-view vertebra localization and identification from CT images.
We convert the 3D problem into a 2D localization and identification task on different views.
Our method can learn the multi-view global information naturally.
arXiv Detail & Related papers (2023-07-24T14:43:07Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19.
Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint.
Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume.
arXiv Detail & Related papers (2022-11-10T13:11:21Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
This paper introduces an adversarial performance validation network into a 2D-to-3D segmentation framework.
The proposed network converts the 2D-coarse result to 3D high-quality segmentation masks in a coarse-to-fine manner, allowing joint optimization to improve segmentation accuracy.
Experiments on the NIH pancreas segmentation dataset demonstrate the proposed network achieves state-of-the-art accuracy on small organ segmentation and outperforms the previous best.
arXiv Detail & Related papers (2022-04-16T18:00:29Z) - Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D
Networks for 3D Coherent Layer Segmentation of Retina OCT Images [33.99874168018807]
In this study, a novel framework based on hybrid 2D-3D convolutional neural networks (CNNs) is proposed to obtain continuous 3D retinal layer surfaces from OCT.
Our framework achieves superior results to state-of-the-art 2D methods in terms of both layer segmentation accuracy and cross-B-scan 3D continuity.
arXiv Detail & Related papers (2022-03-04T15:55:09Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses.
Existing methods may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images.
We argue that preserving the continuity of extracted vessels requires to take into account the global geometry.
We propose a hybrid representation learning approach to address this challenge.
arXiv Detail & Related papers (2020-12-14T05:22:49Z) - A$^3$DSegNet: Anatomy-aware artifact disentanglement and segmentation
network for unpaired segmentation, artifact reduction, and modality
translation [18.500206499468902]
CBCT images are of low-quality and artifact-laden due to noise, poor tissue contrast, and the presence of metallic objects.
There exists a wealth of artifact-free, high quality CT images with vertebra annotations.
This motivates us to build a CBCT vertebra segmentation model using unpaired CT images with annotations.
arXiv Detail & Related papers (2020-01-02T06:37:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.