論文の概要: Improving Interpretability for Computer-aided Diagnosis tools on Whole
Slide Imaging with Multiple Instance Learning and Gradient-based Explanations
- arxiv url: http://arxiv.org/abs/2009.14001v1
- Date: Tue, 29 Sep 2020 13:39:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 05:43:35.244435
- Title: Improving Interpretability for Computer-aided Diagnosis tools on Whole
Slide Imaging with Multiple Instance Learning and Gradient-based Explanations
- Title(参考訳): マルチインスタンス学習とグラデーションに基づく説明を用いた全スライドイメージングにおけるコンピュータ支援診断ツールの解釈性の向上
- Authors: Antoine Pirovano and Hippolyte Heuberger and Sylvain Berlemont and
Sa\"id Ladjal and Isabelle Bloch
- Abstract要約: 我々はWSI分類アーキテクチャの設計を形式化し、断片的解釈可能性アプローチを提案する。
本研究の目的は,タイルレベルスコアに基づいて決定を下す方法,タイルスコアがどう決定されるか,どの機能を用いてタスクに関連があるかを説明することである。
そこで本研究では,AUCにおけるタイルレベルの分類性能を29%以上向上させる,新しい解釈可能性スライドレベルの熱マップを提案する。
- 参考スコア(独自算出の注目度): 2.5461557112299773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning methods are widely used for medical applications to assist
medical doctors in their daily routines. While performances reach expert's
level, interpretability (highlight how and what a trained model learned and why
it makes a specific decision) is the next important challenge that deep
learning methods need to answer to be fully integrated in the medical field. In
this paper, we address the question of interpretability in the context of whole
slide images (WSI) classification. We formalize the design of WSI
classification architectures and propose a piece-wise interpretability
approach, relying on gradient-based methods, feature visualization and multiple
instance learning context. We aim at explaining how the decision is made based
on tile level scoring, how these tile scores are decided and which features are
used and relevant for the task. After training two WSI classification
architectures on Camelyon-16 WSI dataset, highlighting discriminative features
learned, and validating our approach with pathologists, we propose a novel
manner of computing interpretability slide-level heat-maps, based on the
extracted features, that improves tile-level classification performances by
more than 29% for AUC.
- Abstract(参考訳): 深層学習法は、医師の日常的な生活を支援する医療用途に広く使われている。
パフォーマンスが専門家のレベルに達する一方で、解釈可能性(トレーニングされたモデルがどのように学び、なぜ特定の決定をしたのか)は、ディープラーニングメソッドが医療分野に完全に統合するために答える必要がある次の重要な課題である。
本稿では,スライド画像全体(WSI)分類の文脈における解釈可能性の問題に対処する。
本稿では,wsi分類アーキテクチャの設計を定式化し,グラデーションベース手法,特徴可視化,複数インスタンス学習コンテキストに依拠して,区分的解釈可能性アプローチを提案する。
本研究の目的は,タイルレベルスコアに基づいて決定を下す方法,タイルレベルスコアを決定する方法,タスクにどの機能を使用し,関連するかを説明することである。
2つのWSI分類アーキテクチャをCamelyon-16 WSIデータセットでトレーニングし、学習した識別的特徴を強調し、病理学者によるアプローチを検証するとともに、抽出した特徴に基づいて、新しい計算の解釈可能性スライドレベルの熱マップを提案し、AUCのタイルレベルの分類性能を29%以上改善する。
関連論文リスト
- Efficient Whole Slide Image Classification through Fisher Vector Representation [2.4472081831862655]
本稿では,最も情報性の高いパッチの識別と検証を自動化し,WSI分類の新しい手法を提案する。
提案手法は2段階からなる。まず,その病理学的意義に基づいて,WSIから少数のパッチのみを抽出し,次いで,これらのパッチから抽出した特徴を表現するためにFisherベクトルを用いる。
このアプローチは、WSI表現内の主要な病理的特徴をアクセントするだけでなく、計算オーバーヘッドを大幅に減らし、プロセスをより効率的かつスケーラブルにする。
論文 参考訳(メタデータ) (2024-11-13T11:24:12Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - WEEP: A method for spatial interpretation of weakly supervised CNN models in computational pathology [0.36096289461554343]
モデル解釈のための新しい方法 Wsi rEgion sElection aPproach (WEEP) を提案する。
乳がん計算病理領域における二分分類課題におけるWEEPについて検討した。
論文 参考訳(メタデータ) (2024-03-22T14:32:02Z) - PathM3: A Multimodal Multi-Task Multiple Instance Learning Framework for Whole Slide Image Classification and Captioning [35.24716774767677]
本稿では,WSI分類とキャプションのためのマルチタスク・マルチインスタンス学習フレームワークPathM3を提案する。
本手法は,限られたWSI診断キャプションデータを活用することで,WSIレベルのキャプションにおけるデータ不足を克服する。
論文 参考訳(メタデータ) (2024-03-13T21:19:12Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
我々は、全スライド画像のギガピクセルスケールの自己スーパービジョンのためのSlide Pre-trained Transformer (SPT)を提案する。
バイオメディカル・マイクロスコープ・データセットを用いて,5つの診断課題におけるSPT視覚表現のベンチマークを行った。
論文 参考訳(メタデータ) (2024-02-09T05:05:28Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
複数のインスタンス学習モデルを説明するための4つの属性法について検討する。
急性骨髄性白血病の2つのデータセットと100万以上の単細胞画像について検討した。
我々は、属性マップと医療専門家の注釈を比較し、モデルの意思決定が人間の基準とどのように異なるかを確認する。
論文 参考訳(メタデータ) (2023-03-15T14:00:11Z) - Lesion-Aware Contrastive Representation Learning for Histopathology
Whole Slide Images Analysis [16.264758789726223]
本稿では,スライド画像解析の病理組織学的手法として,Lesion-Aware Contrastive Learning (LACL) という新しいコントラスト表現学習フレームワークを提案する。
実験の結果,LACLは異なるデータセット上での組織像表現学習において,最高の性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-06-27T08:39:51Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - Data Efficient and Weakly Supervised Computational Pathology on Whole
Slide Images [4.001273534300757]
計算病理学は、客観的診断、治療反応予測、臨床関連性の新たな形態学的特徴の同定を可能にする可能性がある。
ディープラーニングベースの計算病理学アプローチでは、完全に教師された設定でギガピクセル全体のスライド画像(WSI)のマニュアルアノテーションを必要とするか、弱い教師付き設定でスライドレベルのラベルを持つ何千ものWSIを必要とする。
ここでは、クラスタリングに制約のある複数のインスタンス学習について紹介する。
論文 参考訳(メタデータ) (2020-04-20T23:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。