Does locality plus perfect correlation imply determinism?
- URL: http://arxiv.org/abs/2009.14223v2
- Date: Tue, 25 Jun 2024 09:37:54 GMT
- Title: Does locality plus perfect correlation imply determinism?
- Authors: Michael J. W. Hall,
- Abstract summary: A 1964 paper by John Bell gave the first demonstration that quantum mechanics is incompatible with local hidden variables.
This paper aims to bring clarity to the debate via simple examples and rigorous results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A 1964 paper by John Bell gave the first demonstration that quantum mechanics is incompatible with local hidden variables. There is an ongoing and vigorous debate on whether he relied on an assumption of determinism, or instead, as he later claimed, derived determinism from assumptions of locality and perfect correlation. This paper aims to bring clarity to the debate via simple examples and rigorous results. It is shown that the weak form of locality used in Bell's 1964 paper (parameter independence) is insufficient for such a derivation, whereas an independent form called outcome independence is sufficient even when weak locality does not hold. It further follows that outcome independence, by itself, implies that standard quantum mechanics is incomplete. It is also shown that an appeal by Bell to the Einstein-Rosen-Podolsky argument to support his claim fails, via examples that expose logical gaps in this argument. However, replacing the reality criterion underpinning the argument by a stronger criterion enables a rigorous derivation of both weak locality and determinism, as required for Bell's 1964 paper. Consequences for quantum interpretations, locality, and classical common causes are briefly discussed, with reference to an example of local classical indeterminism.
Related papers
- Bell vs Bell: a ding-dong battle over quantum incompleteness [0.0]
John Bell gave the first demonstration that quantum mechanics is incompatible with local hidden variables.
This paper aims to bring clarity to the debate via simple examples and rigorous results.
arXiv Detail & Related papers (2024-06-27T11:11:28Z) - Generalized Einstein-Podolsky-Rosen Steering Paradox [18.5699135339787]
We present a generalized EPR steering paradox, which predicts a contradictory equality $2_Q=left( 1+deltaright)_C$.
We test the paradox through a two-setting steering protocol, and find that the state is steerable if some specific measurement requirements are satisfied.
Our construction also enlightens the building of EPR steering inequality, which may contribute to some schemes for typical quantum teleportation and quantum key distributions.
arXiv Detail & Related papers (2024-05-06T01:25:11Z) - Some consequences of Sica's approach to Bell's inequalities [55.2480439325792]
Louis Sica derived Bell's inequalities from the hypothesis that the time series of outcomes observed in one station does not change if the setting in the other station is changed.
In this paper, Sica's approach is extended to series with non ideal efficiency and to the actual time structure of experimental data.
arXiv Detail & Related papers (2024-03-05T13:59:52Z) - Quantum theories with local information flow [0.0]
Bell non-locality is a term that applies to specific modifications and interpretations of quantum mechanics.
Motivated by Bell's original inequality, we identify four viable categories of quantum theories.
arXiv Detail & Related papers (2022-11-23T22:06:03Z) - Quantum nonlocality: How does nature do it? [0.0]
Hance and Hossenfelder argue that maintaining local causality requires violating statistical independence.
Here, we recall that there is a third option, namely, rejecting that measurement outcomes are governed in any way by hidden variables.
We argue that this third option is scientifically more plausible and answers the question of why and how nature produces quantum nonlocality.
arXiv Detail & Related papers (2022-11-11T20:32:42Z) - Non-Boolean Hidden Variables model reproduces Quantum Mechanics'
predictions for Bell's experiment [91.3755431537592]
Theory aimed to violate Bell's inequalities must start by giving up Boolean logic.
"Hard" problem is to predict the time values when single particles are detected.
"Soft" problem is to explain the violation of Bell's inequalities within (non-Boolean) Local Realism.
arXiv Detail & Related papers (2020-05-20T21:46:35Z) - Indeterminism and Undecidability [0.0]
Chaitin's follow-up to Goedel's (first) incompleteness theorem can be proved.
The main point is that Bell and others did not exploit the full empirical content of quantum mechanics.
arXiv Detail & Related papers (2020-03-07T11:06:23Z) - Reformulating Bell's Theorem: The Search for a Truly Local Quantum
Theory [0.0]
Bell's "no-go" theorem rests on three axioms, local causality, no superdeterminism, and one world.
We show that by assuming local causality and no superdeterminism, we can give a direct proof of many worlds.
We identify a local many worlds interpretation that replaces the wave function with a separable Lorentz-invariant wave-field.
arXiv Detail & Related papers (2020-03-06T19:05:37Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Using Randomness to decide among Locality, Realism and Ergodicity [91.3755431537592]
An experiment is proposed to find out, or at least to get an indication about, which one is false.
The results of such experiment would be important not only to the foundations of Quantum Mechanics.
arXiv Detail & Related papers (2020-01-06T19:26:32Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.