論文の概要: The General Law Principles for Protection the Personal Data and their
Importance
- arxiv url: http://arxiv.org/abs/2009.14313v1
- Date: Tue, 29 Sep 2020 21:28:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-30 16:11:45.285912
- Title: The General Law Principles for Protection the Personal Data and their
Importance
- Title(参考訳): 個人情報保護に関する一般法原則とその意義
- Authors: Jonatas S. de Souza, Jair M. Abe, Luiz A. de Lima, Nilson A. de Souza
- Abstract要約: ブラジルは、個人データの収集と処理方法を通知する新しい法律を提出した。
本研究の目的は,個人データ漏洩の実例を報告し,個人データ保護に関する一般法則の原則を強調することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rapid technological change and globalization have created new challenges when
it comes to the protection and processing of personal data. In 2018, Brazil
presented a new law that has the proposal to inform how personal data should be
collected and treated, to guarantee the security and integrity of the data
holder. The purpose of this paper is to emphasize the principles of the General
Law on Personal Data Protection, informing real cases of leakage of personal
data and thus obtaining an understanding of the importance of gains that meet
the interests of Internet users on the subject and its benefits to the entire
Brazilian society.
- Abstract(参考訳): 急速な技術変化とグローバリゼーションは、個人データの保護と処理に関して新たな課題を生み出した。
2018年、ブラジルは、個人データの収集と扱い、データ保持者のセキュリティと整合性を保証するための提案を行う新しい法律を提出した。
本研究の目的は,個人データ保護に関する一般法の原則を強調し,個人データの漏えいの実態を報告し,その課題に対するインターネット利用者の関心とブラジル社会全体の利益を満足する利益の重要性について理解することにある。
関連論文リスト
- The GDPR's Rules on Data Breaches: Analysing Their Rationales and Effects [1.8499314936771563]
データ漏洩通知義務は、組織をより良いセキュリティに導くことができる。
また、人々が自分の利益を守る可能性を非現実的に期待するべきではないと警告している。
最後に、この論文は、データ保護当局に対して、報告されたデータ漏洩に関するさらなる情報を公開するよう求めている。
論文 参考訳(メタデータ) (2024-10-08T14:43:15Z) - LegiLM: A Fine-Tuned Legal Language Model for Data Compliance [5.256747140296861]
LegiLMは、データや情報コンプライアンスに関するコンサルティングに特化した、新しい法的言語モデルである。
特定のアクションやイベントがデータセキュリティとプライバシ規則に違反しているかどうかを自動的に評価するように調整されている。
LegiLMは、データ規制違反の検出、健全な法的正当性の提供、必要なコンプライアンス修正の推奨に優れています。
論文 参考訳(メタデータ) (2024-09-09T02:06:52Z) - Cloaked Classifiers: Pseudonymization Strategies on Sensitive Classification Tasks [4.66054169739129]
本稿では,データ保護と堅牢なプライバシ保護のバランスについて検討する。
我々は,多言語急進化データセットを手動で偽名化する手法を共有し,元のデータに匹敵する性能を確保する。
論文 参考訳(メタデータ) (2024-06-25T18:30:25Z) - The Data Minimization Principle in Machine Learning [61.17813282782266]
データ最小化は、収集、処理、保持されるデータの量を減らすことを目的としている。
様々な国際データ保護規制によって支持されている。
しかし、厳密な定式化が欠如しているため、その実践的な実装は依然として課題である。
論文 参考訳(メタデータ) (2024-05-29T19:40:27Z) - SoK: The Gap Between Data Rights Ideals and Reality [46.14715472341707]
権利に基づくプライバシー法は、個人が自分のデータよりも効果的に権限を与えるのか?
本稿では,実証研究,ニュース記事,ブログ記事をレビューすることで,これらのアプローチを精査する。
論文 参考訳(メタデータ) (2023-12-03T21:52:51Z) - Extensible Consent Management Architectures for Data Trusts [0.0]
本稿では,データトラストにおける同意管理の枠組みを提案する。
データは、対応する法的能力に基づいて確立された「ロールトンネル」を介してネットワークを流れることができる。
論文 参考訳(メタデータ) (2023-09-28T18:28:50Z) - An Example of Privacy and Data Protection Best Practices for Biometrics
Data Processing in Border Control: Lesson Learned from SMILE [0.9442139459221784]
データの誤用、個人のプライバシーの妥協、および/または承認されたデータの処理は不可逆である。
これは部分的には、システム開発プロセスにおける設計によるデータ保護とプライバシの統合のための方法やガイダンスの欠如によるものである。
データコントローラと開発者のためのガイダンスを提供するために、プライバシーとデータ保護のベストプラクティスの例を示す。
論文 参考訳(メタデータ) (2022-01-10T15:34:43Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Second layer data governance for permissioned blockchains: the privacy
management challenge [58.720142291102135]
新型コロナウイルス(COVID-19)やエボラウイルス(エボラ出血熱)のようなパンデミックの状況では、医療データを共有することに関連する行動は、大規模な感染を避け、死亡者を減らすために重要である。
この意味において、許可されたブロックチェーン技術は、スマートコントラクトが管理する不変で統一された分散データベースを通じて、データのオーナシップ、透明性、セキュリティを提供する権利をユーザに与えるために登場します。
論文 参考訳(メタデータ) (2020-10-22T13:19:38Z) - A vision for global privacy bridges: Technical and legal measures for
international data markets [77.34726150561087]
データ保護法とプライバシーの権利が認められているにもかかわらず、個人情報の取引は「トレーディング・オイル」と同等のビジネスになっている。
オープンな対立は、データに対するビジネスの要求とプライバシーへの欲求の間に生じている。
プライバシを備えたパーソナル情報市場のビジョンを提案し,テストする。
論文 参考訳(メタデータ) (2020-05-13T13:55:50Z) - Beyond privacy regulations: an ethical approach to data usage in
transportation [64.86110095869176]
本稿では,フェデレート機械学習を交通分野に適用する方法について述べる。
フェデレートラーニングは、ユーザのプライバシを尊重しつつ、プライバシに敏感なデータを処理可能にする方法だと考えています。
論文 参考訳(メタデータ) (2020-04-01T15:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。