論文の概要: EWS-GCN: Edge Weight-Shared Graph Convolutional Network for
Transactional Banking Data
- arxiv url: http://arxiv.org/abs/2009.14588v1
- Date: Wed, 30 Sep 2020 12:09:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 22:41:55.755626
- Title: EWS-GCN: Edge Weight-Shared Graph Convolutional Network for
Transactional Banking Data
- Title(参考訳): EWS-GCN:トランザクションバンキングデータのためのエッジ重み付きグラフ畳み込みネットワーク
- Authors: Ivan Sukharev, Valentina Shumovskaia, Kirill Fedyanin, Maxim Panov and
Dmitry Berestnev
- Abstract要約: 取引先間の送金に基づく顧客間の接続情報により、クレジットスコアリングの質が大幅に向上することを示す。
本研究では,新しいグラフ畳み込みニューラルネットワークモデル EWS-GCN を開発し,アテンション機構によるグラフ畳み込みとリカレントニューラルネットワークのアイデアを組み合わせた。
- 参考スコア(独自算出の注目度): 2.1169216065483996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we discuss how modern deep learning approaches can be applied
to the credit scoring of bank clients. We show that information about
connections between clients based on money transfers between them allows us to
significantly improve the quality of credit scoring compared to the approaches
using information about the target client solely. As a final solution, we
develop a new graph neural network model EWS-GCN that combines ideas of graph
convolutional and recurrent neural networks via attention mechanism. The
resulting model allows for robust training and efficient processing of
large-scale data. We also demonstrate that our model outperforms the
state-of-the-art graph neural networks achieving excellent results
- Abstract(参考訳): 本稿では,銀行クライアントのクレジットスコアリングに,最新のディープラーニングアプローチを適用する方法について論じる。
本研究は,顧客間の金銭移動に基づく関係情報により,ターゲットクライアントの情報のみを用いたアプローチと比較して,クレジットスコアの質を著しく向上させることができることを示す。
最後に,グラフ畳み込みと再帰的ニューラルネットワークのアイデアをアテンション機構を通じて組み合わせた新しいグラフニューラルネットワークモデル EWS-GCN を提案する。
結果として得られるモデルは、大規模データの堅牢なトレーニングと効率的な処理を可能にする。
また、我々のモデルは最先端のグラフニューラルネットワークよりも優れた結果が得られることを示す。
関連論文リスト
- Analysis of Information Propagation in Ethereum Network Using Combined
Graph Attention Network and Reinforcement Learning to Optimize Network
Efficiency and Scalability [2.795656498870966]
ネットワーク効率とスケーラビリティを最適化するグラフ注意ネットワーク(GAT)と強化学習(RL)モデルを開発した。
実験評価では,大規模データセットを用いたモデルの性能解析を行った。
その結果,設計したGAT-RLモデルは,他のGCNモデルと比較して性能的に優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-02T17:19:45Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - AoI-based Temporal Attention Graph Neural Network for Popularity
Prediction and Content Caching [9.16219929722585]
情報中心ネットワーク(ICN)は、予測結果に基づいて、限られた人気コンテンツをネットワークの端に積極的に保持することを目的としている。
本稿では,2部グラフに埋め込まれた構造パターンと時間パターンを協調的に学習するために,有効な動的グラフニューラルネットワーク(DGNN)を利用する。
また,情報時代(AoI)に基づくアテンション機構を提案し,貴重な歴史的情報を抽出する。
論文 参考訳(メタデータ) (2022-08-18T02:57:17Z) - Spiking Graph Convolutional Networks [19.36064180392385]
SpikingGCNは、GCNの埋め込みとSNNの生体忠実性特性を統合することを目的としたエンドツーエンドフレームワークである。
ニューロモルフィックチップ上でのスパイキングGCNは、グラフデータ解析にエネルギー効率の明確な利点をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-05T16:44:36Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
現在の実践は、性能予測のためのモデルトレーニングにおいて高価な計算コストを必要とする。
本稿では,学習中のシナプス接続(エッジ)上の制御ダイナミクスを解析し,ニューラルネットワーク選択のための新しいフレームワークを提案する。
我々のフレームワークは、ニューラルネットワークトレーニング中のバックプロパゲーションがシナプス接続の動的進化と等価であるという事実に基づいて構築されている。
論文 参考訳(メタデータ) (2022-01-11T20:53:15Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
グラフ学習における最新の方向性として、SNN(Simplicial Neural Network)が最近登場した。
リンク予測のためのBlock Simplicial Complex Neural Networks (BScNets) モデルを提案する。
BScNetsは、コストを抑えながら最先端のモデルよりも大きなマージンを保っている。
論文 参考訳(メタデータ) (2021-12-13T17:35:54Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Linking Bank Clients using Graph Neural Networks Powered by Rich
Transactional Data [2.1169216065483996]
本稿では,ネットワークのトポロジ構造だけでなく,グラフノードやエッジで利用可能な豊富な時系列データを利用する新しいグラフニューラルネットワークモデルを提案する。
提案手法は既存の手法よりも優れており,リンク予測問題におけるROC AUCスコアの差が大きく,信用スコアの質の向上も可能である。
論文 参考訳(メタデータ) (2020-01-23T10:02:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。