Improving Generalization of Deep Fault Detection Models in the Presence
of Mislabeled Data
- URL: http://arxiv.org/abs/2009.14606v1
- Date: Wed, 30 Sep 2020 12:33:25 GMT
- Title: Improving Generalization of Deep Fault Detection Models in the Presence
of Mislabeled Data
- Authors: Katharina Rombach, Gabriel Michau and Olga Fink
- Abstract summary: We propose a novel two-step framework for robust training with label noise.
In the first step, we identify outliers (including the mislabeled samples) based on the update in the hypothesis space.
In the second step, we propose different approaches to modifying the training data based on the identified outliers and a data augmentation technique.
- Score: 1.3535770763481902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mislabeled samples are ubiquitous in real-world datasets as rule-based or
expert labeling is usually based on incorrect assumptions or subject to biased
opinions. Neural networks can "memorize" these mislabeled samples and, as a
result, exhibit poor generalization. This poses a critical issue in fault
detection applications, where not only the training but also the validation
datasets are prone to contain mislabeled samples. In this work, we propose a
novel two-step framework for robust training with label noise. In the first
step, we identify outliers (including the mislabeled samples) based on the
update in the hypothesis space. In the second step, we propose different
approaches to modifying the training data based on the identified outliers and
a data augmentation technique. Contrary to previous approaches, we aim at
finding a robust solution that is suitable for real-world applications, such as
fault detection, where no clean, "noise-free" validation dataset is available.
Under an approximate assumption about the upper limit of the label noise, we
significantly improve the generalization ability of the model trained under
massive label noise.
Related papers
- Learning in the Wild: Towards Leveraging Unlabeled Data for Effectively
Tuning Pre-trained Code Models [38.7352992942213]
We propose a novel approach named HINT to improve pre-trained code models with large-scale unlabeled datasets.
HINT includes two main modules: HybrId pseudo-labeled data selection and Noise-tolerant Training.
The experimental results show that HINT can better leverage those unlabeled data in a task-specific way.
arXiv Detail & Related papers (2024-01-02T06:39:00Z) - Robust Data Pruning under Label Noise via Maximizing Re-labeling
Accuracy [34.02350195269502]
We formalize the problem of data pruning with re-labeling.
We propose a novel data pruning algorithm, Prune4Rel, that finds a subset maximizing the total neighborhood confidence of all training examples.
arXiv Detail & Related papers (2023-11-02T05:40:26Z) - Late Stopping: Avoiding Confidently Learning from Mislabeled Examples [61.00103151680946]
We propose a new framework, Late Stopping, which leverages the intrinsic robust learning ability of DNNs through a prolonged training process.
We empirically observe that mislabeled and clean examples exhibit differences in the number of epochs required for them to be consistently and correctly classified.
Experimental results on benchmark-simulated and real-world noisy datasets demonstrate that the proposed method outperforms state-of-the-art counterparts.
arXiv Detail & Related papers (2023-08-26T12:43:25Z) - Boosting Semi-Supervised Learning by bridging high and low-confidence
predictions [4.18804572788063]
Pseudo-labeling is a crucial technique in semi-supervised learning (SSL)
We propose a new method called ReFixMatch, which aims to utilize all of the unlabeled data during training.
arXiv Detail & Related papers (2023-08-15T00:27:18Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
We introduce a novel conditional image generation framework that accepts noisy-labeled and uncurated data during training.
We propose soft curriculum learning, which assigns instance-wise weights for adversarial training while assigning new labels for unlabeled data.
Our experiments show that our approach outperforms existing semi-supervised and label-noise robust methods in terms of both quantitative and qualitative performance.
arXiv Detail & Related papers (2023-07-17T08:31:59Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Learning with Noisy labels via Self-supervised Adversarial Noisy Masking [33.87292143223425]
We propose a novel training approach termed adversarial noisy masking.
It adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples.
It is tested on both synthetic and real-world noisy datasets.
arXiv Detail & Related papers (2023-02-14T03:13:26Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Self-Supervised Noisy Label Learning for Source-Free Unsupervised Domain
Adaptation [87.60688582088194]
We propose a novel Self-Supervised Noisy Label Learning method.
Our method can easily achieve state-of-the-art results and surpass other methods by a very large margin.
arXiv Detail & Related papers (2021-02-23T10:51:45Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.