Heteroscedastic Bayesian Optimisation for Stochastic Model Predictive
Control
- URL: http://arxiv.org/abs/2010.00202v2
- Date: Thu, 8 Oct 2020 03:01:52 GMT
- Title: Heteroscedastic Bayesian Optimisation for Stochastic Model Predictive
Control
- Authors: Rel Guzman, Rafael Oliveira, and Fabio Ramos
- Abstract summary: Model predictive control (MPC) has been successful in applications involving the control of complex physical systems.
We investigate fine-tuning MPC methods in the context of MPC, which presents extra challenges due to the randomness of the controller's actions.
- Score: 23.180330602334223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model predictive control (MPC) has been successful in applications involving
the control of complex physical systems. This class of controllers leverages
the information provided by an approximate model of the system's dynamics to
simulate the effect of control actions. MPC methods also present a few
hyper-parameters which may require a relatively expensive tuning process by
demanding interactions with the physical system. Therefore, we investigate
fine-tuning MPC methods in the context of stochastic MPC, which presents extra
challenges due to the randomness of the controller's actions. In these
scenarios, performance outcomes present noise, which is not homogeneous across
the domain of possible hyper-parameter settings, but which varies in an
input-dependent way. To address these issues, we propose a Bayesian
optimisation framework that accounts for heteroscedastic noise to tune
hyper-parameters in control problems. Empirical results on benchmark continuous
control tasks and a physical robot support the proposed framework's suitability
relative to baselines, which do not take heteroscedasticity into account.
Related papers
- Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach [0.0]
Neural Networks (NNs) can be leveraged to parametrize control policies that yield good performance.
NNs' sensitivity to small input changes poses a risk of destabilizing the closed-loop system.
To address these problems, we leverage the framework of port-Hamiltonian systems to design continuous-time distributed control policies.
The effectiveness of the proposed distributed controllers is demonstrated through consensus control of non-holonomic mobile robots.
arXiv Detail & Related papers (2024-11-15T10:44:29Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - Correct-by-Construction Control for Stochastic and Uncertain Dynamical
Models via Formal Abstractions [44.99833362998488]
We develop an abstraction framework that can be used to solve this problem under various modeling assumptions.
We use state-of-the-art verification techniques to compute an optimal policy on the iMDP with guarantees for satisfying the given specification.
We then show that, by construction, we can refine this policy into a feedback controller for which these guarantees carry over to the dynamical model.
arXiv Detail & Related papers (2023-11-16T11:03:54Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states.
We use state-of-the-art verification techniques to provide guarantees on the interval Markov decision process and compute a controller for which these guarantees carry over to the original control system.
arXiv Detail & Related papers (2023-01-04T10:40:30Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - Adaptive Model Predictive Control by Learning Classifiers [26.052368583196426]
We propose an adaptive MPC variant that automatically estimates control and model parameters.
We leverage recent results showing that BO can be formulated as a density ratio estimation.
This is then integrated into a model predictive path integral control framework yielding robust controllers for a variety of challenging robotics tasks.
arXiv Detail & Related papers (2022-03-13T23:22:12Z) - Bayesian Optimisation for Robust Model Predictive Control under Model
Parameter Uncertainty [26.052368583196426]
We propose an adaptive optimisation approach for tuning model predictive control (MPC) hyper- parameters.
We develop a Bayesian optimisation (BO) algorithm with a heteroscedastic noise model to deal with varying noise.
Experimental results demonstrate that our approach leads to higher cumulative rewards and more stable controllers.
arXiv Detail & Related papers (2022-03-01T15:33:21Z) - Optimization of the Model Predictive Control Meta-Parameters Through
Reinforcement Learning [1.4069478981641936]
We propose a novel framework in which any parameter of the control algorithm can be jointly tuned using reinforcement learning(RL)
We demonstrate our framework on the inverted pendulum control task, reducing the total time of the control system by 36% while also improving the control performance by 18.4% over the best-performing MPC baseline.
arXiv Detail & Related papers (2021-11-07T18:33:22Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.