論文の概要: Learning Variational Word Masks to Improve the Interpretability of
Neural Text Classifiers
- arxiv url: http://arxiv.org/abs/2010.00667v3
- Date: Thu, 19 Nov 2020 04:16:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 07:17:05.600758
- Title: Learning Variational Word Masks to Improve the Interpretability of
Neural Text Classifiers
- Title(参考訳): 変分単語マスクの学習によるニューラルテキスト分類器の解釈性の向上
- Authors: Hanjie Chen, Yangfeng Ji
- Abstract要約: モデルの解釈可能性を改善するための新しい取り組みが始まったばかりで、既存の多くのメソッドでは、トレーニングの追加インプットとして事前情報または人的アノテーションが必要である。
本稿では,タスク固有の重要な単語を自動的に学習し,分類に関する無関係な情報を低減し,最終的にモデル予測の解釈可能性を向上させるための変分語マスク(VMASK)手法を提案する。
- 参考スコア(独自算出の注目度): 21.594361495948316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To build an interpretable neural text classifier, most of the prior work has
focused on designing inherently interpretable models or finding faithful
explanations. A new line of work on improving model interpretability has just
started, and many existing methods require either prior information or human
annotations as additional inputs in training. To address this limitation, we
propose the variational word mask (VMASK) method to automatically learn
task-specific important words and reduce irrelevant information on
classification, which ultimately improves the interpretability of model
predictions. The proposed method is evaluated with three neural text
classifiers (CNN, LSTM, and BERT) on seven benchmark text classification
datasets. Experiments show the effectiveness of VMASK in improving both model
prediction accuracy and interpretability.
- Abstract(参考訳): 解釈可能なニューラルテキスト分類器を構築するために、これまでの研究の多くは、本質的に解釈可能なモデルの設計や忠実な説明を見つけることに集中してきた。
モデル解釈性を改善するための新しい作業がちょうど始まったばかりであり、多くの既存の手法はトレーニングで追加の入力として事前情報または人間のアノテーションを必要とする。
この制限に対処するために,タスク固有の重要な単語を自動的に学習し,分類に関する無関係な情報を減らすための変分ワードマスク(vmask)手法を提案する。
提案手法は,7つのベンチマークテキスト分類データセット上で,3つのニューラルテキスト分類器 (CNN, LSTM, BERT) を用いて評価する。
モデル予測精度と解釈可能性の両方を改善する上で,VMASKの有効性を示す実験を行った。
関連論文リスト
- Ensembling Finetuned Language Models for Text Classification [55.15643209328513]
ファインタニング(英: Finetuning)は、特定のタスクに事前訓練されたモデルを適用するために、様々なコミュニティで一般的なプラクティスである。
ニューラルネットワークのアンサンブルは、通常、パフォーマンスを高め、信頼性の高い不確実性推定を提供するために使用される。
6つのデータセット上の5つの大きめのモデルから予測されたメタデータセットを提示し、異なるアンサンブル戦略の結果を報告する。
論文 参考訳(メタデータ) (2024-10-25T09:15:54Z) - Simple-Sampling and Hard-Mixup with Prototypes to Rebalance Contrastive Learning for Text Classification [11.072083437769093]
我々は不均衡テキスト分類タスクのためのSharpReCLという新しいモデルを提案する。
私たちのモデルは、いくつかのデータセットで人気のある大きな言語モデルよりも優れています。
論文 参考訳(メタデータ) (2024-05-19T11:33:49Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z) - SLCNN: Sentence-Level Convolutional Neural Network for Text
Classification [0.0]
畳み込みニューラルネットワーク(CNN)は,テキスト分類のタスクにおいて顕著な成功を収めている。
CNNを用いたテキスト分類のための新しいベースラインモデルが研究されている。
結果から,提案したモデルの性能は,特に長いドキュメントにおいて向上していることがわかった。
論文 参考訳(メタデータ) (2023-01-27T13:16:02Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
クラスインクリメンタル学習(CIL)アルゴリズムは、インクリメンタルに到着したデータから新しいオブジェクトクラスを継続的に学習することを目的としている。
表現学習における様々な評価プロトコルを用いて,CILアルゴリズムによって訓練されたニューラルネットワークモデルを実験的に解析する。
論文 参考訳(メタデータ) (2022-06-16T11:44:11Z) - Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
本稿では,Hintと呼ばれる階層型インタプリタ型ニューラルテキスト分類器を提案する。
レビューデータセットとニュースデータセットの両方の実験結果から,提案手法は既存の最先端テキスト分類器と同等のテキスト分類結果が得られることが示された。
論文 参考訳(メタデータ) (2022-02-20T11:15:03Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
本研究では,事前学習したトランスフォーマーエンコーダをベースとしたニューラルテキスト分類器の解釈の堅牢性を評価する。
どちらのテストも、期待された行動から驚くほど逸脱しており、実践者が解釈から引き出す可能性のある洞察の程度について疑問を呈している。
論文 参考訳(メタデータ) (2021-06-08T18:31:02Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
自然言語処理のためのトランスファーラーニングとアクティブラーニングの最近の進歩は、必要なアノテーション予算を大幅に削減する可能性を開く。
我々は,様々なベイズ不確実性推定手法とモンテカルロドロップアウトオプションの実験的研究を,アクティブ学習フレームワークで実施する。
また, 能動学習中にインスタンスを取得するためには, 完全サイズのトランスフォーマーを蒸留版に置き換えることにより, 計算性能が向上することを示した。
論文 参考訳(メタデータ) (2021-01-20T13:59:25Z) - A Framework to Learn with Interpretation [2.3741312212138896]
本稿では,予測モデルとその関連解釈モデルを共同で学習する新しい枠組みを提案する。
我々は,選択した隠れ層の出力を入力として取り込む,高レベル属性関数の小型辞書を求める。
学習した機能を視覚化する詳細なパイプラインも開発されている。
論文 参考訳(メタデータ) (2020-10-19T09:26:28Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
本稿では,下流タスクを効果的に学習するために,モデルがテキスト表現を学習する能力を直接最適化する学習アルゴリズムを提案する。
マルチタスク事前学習とモデル非依存型メタラーニングの間には,一連のメタトレインステップによる本質的な関係があることが示されている。
論文 参考訳(メタデータ) (2020-04-12T09:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。