論文の概要: Distributed Proximal Splitting Algorithms with Rates and Acceleration
- arxiv url: http://arxiv.org/abs/2010.00952v3
- Date: Thu, 27 Jan 2022 06:41:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 02:42:46.068198
- Title: Distributed Proximal Splitting Algorithms with Rates and Acceleration
- Title(参考訳): 速度と加速度を考慮した分散近位分割アルゴリズム
- Authors: Laurent Condat, Grigory Malinovsky, Peter Richt\'arik
- Abstract要約: 解に対する関数値の最適値または距離の新しいレートで、線形および線形収束結果を導出する。
本稿では,これらのアルゴリズムの分散変種を提案する。
- 参考スコア(独自算出の注目度): 7.691755449724637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze several generic proximal splitting algorithms well suited for
large-scale convex nonsmooth optimization. We derive sublinear and linear
convergence results with new rates on the function value suboptimality or
distance to the solution, as well as new accelerated versions, using varying
stepsizes. In addition, we propose distributed variants of these algorithms,
which can be accelerated as well. While most existing results are ergodic, our
nonergodic results significantly broaden our understanding of primal-dual
optimization algorithms.
- Abstract(参考訳): 大規模凸非平滑最適化に適した近位分割アルゴリズムを複数解析する。
関数値の最適性や解までの距離の新たなレートと、新しい加速バージョンによって、様々なステップ化を用いて、サブリニアおよび線形収束結果を導出する。
さらに,これらのアルゴリズムの分散変種も提案する。
既存の結果のほとんどはエルゴード的だが、非エルゴード的結果は原始双対最適化アルゴリズムの理解を大きく広げている。
関連論文リスト
- Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Ordering for Non-Replacement SGD [7.11967773739707]
我々は,アルゴリズムの非置換形式に対する収束率を改善する順序付けを求める。
我々は,強い凸関数と凸関数のステップサイズを一定かつ小さくするための最適順序付けを開発する。
さらに、注文とミニバッチを組み合わせることで、より複雑なニューラルネットワークにも適用できます。
論文 参考訳(メタデータ) (2023-06-28T00:46:58Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Reweighted Interacting Langevin Diffusions: an Accelerated Sampling
Methodfor Optimization [28.25662317591378]
本稿では, サンプリング手法を高速化し, 難解な最適化問題の解法を提案する。
提案手法は, 後部分布サンプリングとLangevin Dynamicsを用いた最適化の関連性について検討する。
論文 参考訳(メタデータ) (2023-01-30T03:48:20Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
一般化された複合ミラー降下アルゴリズムの一群を提案し,解析する。
適応的なステップサイズでは、提案アルゴリズムは問題の事前知識を必要とせずに収束する。
決定集合の低次元構造を高次元問題に活用する。
論文 参考訳(メタデータ) (2022-11-21T18:31:43Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Momentum with Variance Reduction for Nonconvex Composition Optimization [9.657813709239335]
組成最適化は非機械学習で広く適用されている。
モーメントと分散低減技術を採用した様々な高度なアルゴリズムが開発されている。
我々のアルゴリズムは既存のアルゴリズムよりもはるかに早く収束する。
論文 参考訳(メタデータ) (2020-05-15T19:29:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。