Online Neural Networks for Change-Point Detection
- URL: http://arxiv.org/abs/2010.01388v1
- Date: Sat, 3 Oct 2020 16:55:59 GMT
- Title: Online Neural Networks for Change-Point Detection
- Authors: Mikhail Hushchyn, Kenenbek Arzymatov, Denis Derkach
- Abstract summary: We present two online change-point detection approaches based on neural networks.
We compare them with the best known algorithms on various synthetic and real world data sets.
- Score: 0.6015898117103069
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Moments when a time series changes its behaviour are called change points.
Detection of such points is a well-known problem, which can be found in many
applications: quality monitoring of industrial processes, failure detection in
complex systems, health monitoring, speech recognition and video analysis.
Occurrence of change point implies that the state of the system is altered and
its timely detection might help to prevent unwanted consequences. In this
paper, we present two online change-point detection approaches based on neural
networks. These algorithms demonstrate linear computational complexity and are
suitable for change-point detection in large time series. We compare them with
the best known algorithms on various synthetic and real world data sets.
Experiments show that the proposed methods outperform known approaches.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Change points detection in crime-related time series: an on-line fuzzy
approach based on a shape space representation [0.0]
We propose an on-line method for detecting and querying change points in crime-related time series.
The method is able to accurately detect change points at very low computational costs.
arXiv Detail & Related papers (2023-12-18T10:49:03Z) - Online Change Points Detection for Linear Dynamical Systems with Finite
Sample Guarantees [1.6026317505839445]
We study the online change point detection problem for linear dynamical systems with unknown dynamics.
We develop a data-dependent threshold that can be used in our test that allows one to achieve a pre-specified upper bound on the probability of making a false alarm.
arXiv Detail & Related papers (2023-11-30T18:08:16Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Latent Neural Stochastic Differential Equations for Change Point
Detection [0.6445605125467574]
We present a novel change point detection algorithm based on Latent Neural Differential Equations (SDE)
Our method learns a non-linear deep learning transformation of the process into a latent space and estimates a SDE that describes its evolution over time.
The algorithm uses the likelihood ratio of the learned processes in different timestamps to find change points of the process.
arXiv Detail & Related papers (2022-08-22T13:53:13Z) - E-detectors: a nonparametric framework for sequential change detection [86.15115654324488]
We develop a fundamentally new and general framework for sequential change detection.
Our procedures come with clean, nonasymptotic bounds on the average run length.
We show how to design their mixtures in order to achieve both statistical and computational efficiency.
arXiv Detail & Related papers (2022-03-07T17:25:02Z) - Online Changepoint Detection on a Budget [5.077509096253692]
Changepoints are abrupt variations in the underlying distribution of data.
We propose an online changepoint detection algorithm which compares favorably with offline changepoint detection algorithms.
arXiv Detail & Related papers (2022-01-11T00:20:33Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Sequential Changepoint Detection in Neural Networks with Checkpoints [11.763229353978321]
We introduce a framework for online changepoint detection and simultaneous model learning.
It is based on detecting changepoints across time by sequentially performing generalized likelihood ratio tests.
We show improved performance compared to online Bayesian changepoint detection.
arXiv Detail & Related papers (2020-10-06T21:49:54Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.