論文の概要: Uncertainty-Aware Multi-Modal Ensembling for Severity Prediction of
Alzheimer's Dementia
- arxiv url: http://arxiv.org/abs/2010.01440v2
- Date: Thu, 19 Nov 2020 00:18:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 11:45:13.676872
- Title: Uncertainty-Aware Multi-Modal Ensembling for Severity Prediction of
Alzheimer's Dementia
- Title(参考訳): 不確実性を考慮したマルチモーダルセンシングによるアルツハイマー認知症の重症度予測
- Authors: Utkarsh Sarawgi, Wazeer Zulfikar, Rishab Khincha, Pattie Maes
- Abstract要約: 本稿では,アルツハイマー病の重症度を予測するために,マルチモーダルアンサンブルのための不確実性を考慮したブースティング手法を提案する。
音響的・認知的・言語的特徴にまたがる不確実性の伝播は、データの異義性に頑健なアンサンブルシステムを生み出す。
- 参考スコア(独自算出の注目度): 39.29536042476913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliability in Neural Networks (NNs) is crucial in safety-critical
applications like healthcare, and uncertainty estimation is a widely researched
method to highlight the confidence of NNs in deployment. In this work, we
propose an uncertainty-aware boosting technique for multi-modal ensembling to
predict Alzheimer's Dementia Severity. The propagation of uncertainty across
acoustic, cognitive, and linguistic features produces an ensemble system robust
to heteroscedasticity in the data. Weighing the different modalities based on
the uncertainty estimates, we experiment on the benchmark ADReSS dataset, a
subject-independent and balanced dataset, to show that our method outperforms
the state-of-the-art methods while also reducing the overall entropy of the
system. This work aims to encourage fair and aware models. The source code is
available at https://github.com/wazeerzulfikar/alzheimers-dementia
- Abstract(参考訳): ニューラルネットワーク(nns)の信頼性は、医療のような安全クリティカルなアプリケーションにおいて不可欠であり、不確実性推定は、展開におけるnnsの信頼性を強調するために広く研究されている方法である。
本研究では,マルチモーダルセンシングによるアルツハイマー型認知症重症度予測のための不確実性認識促進手法を提案する。
音響的・認知的・言語的特徴にまたがる不確実性の伝播は、データの異義性に頑健なアンサンブルシステムを生み出す。
不確実性推定に基づく異なるモダリティを重み付けて,本手法がシステム全体のエントロピーを低減しつつ,最先端の手法を上回ることを示すために,主題に依存しないバランスデータセットであるbenchmark adressデータセットを実験した。
この仕事は公正で意識的なモデルを促進することを目的としています。
ソースコードはhttps://github.com/wazeerzulfikar/alzheimers-dementiaで入手できる。
関連論文リスト
- Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning [5.318766629972959]
不確かさの定量化は多くの高次元回帰や学習問題において決定的だが難しい課題である。
我々は、古典的回帰アプローチとニューラルネットワークの両方に適用可能な、回帰におけるUQのための新しいデータ駆動アプローチを開発した。
論文 参考訳(メタデータ) (2024-07-18T16:42:10Z) - Inadequacy of common stochastic neural networks for reliable clinical
decision support [0.4262974002462632]
医療意思決定におけるAIの普及は、倫理的および安全性に関する懸念から、いまだに妨げられている。
しかし、一般的なディープラーニングアプローチは、データシフトによる過信傾向にある。
本研究は臨床応用における信頼性について考察する。
論文 参考訳(メタデータ) (2024-01-24T18:49:30Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z) - Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings [33.25969141014772]
不確実性推定は、デプロイにおける機械学習システムの信頼性を強調する、広く研究されている方法である。
逐次および並列アンサンブル手法により,マルチモーダル設定におけるMLシステムの性能が向上した。
本研究では,不確かさを高く見積もるデータポイントに着目し,マルチモーダルセンシングのための不確実性認識促進手法を提案する。
論文 参考訳(メタデータ) (2021-04-21T18:28:13Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
本稿では,音響的,認知的,言語的特徴を活用してマルチモーダルアンサンブルシステムを構築する新しいアーキテクチャを提案する。
時相特性を持つ特殊な人工ニューラルネットワークを使用して、アルツハイマー認知症(AD)とその重症度を検出する。
本システムでは,AD分類では最先端試験精度,精度,リコール,F1スコアが83.3%,MMSEスコア評価では4.60の最先端試験根平均二乗誤差(RMSE)が得られた。
論文 参考訳(メタデータ) (2020-08-30T21:47:26Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Uncertainty Quantification for Inferring Hawkes Networks [13.283258096829146]
ネットワークデータからノード間の因果関係を学習するための統計的推論フレームワークを開発した。
ネットワークホークス過程の最大推定値に対する不確かさの定量化を行う。
論文 参考訳(メタデータ) (2020-06-12T23:08:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。